Loading…
Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning
To solve the problem that it is difficult to accurately identify the rotor eccentric fault, demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault based on t...
Saved in:
Published in: | Actuators 2023-04, Vol.12 (4), p.145 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373 |
container_end_page | |
container_issue | 4 |
container_start_page | 145 |
container_title | Actuators |
container_volume | 12 |
creator | Yu, Yinquan Gao, Haixi Zhou, Shaowei Pan, Yue Zhang, Kunpeng Liu, Peng Yang, Hui Zhao, Zhao Madyira, Daniel Makundwaneyi |
description | To solve the problem that it is difficult to accurately identify the rotor eccentric fault, demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault based on the combination of branch current analysis and a machine learning algorithm. First, the analysis of the electrical signal of the PMSM after various types of rotor faults shows that there are differences in the time domain of the electrical signal of the PMSM after three types of rotor faults. Considering the symmetry of the structure of the PMSM with a slot-pole ratio of 3/2 and its integer multiples, the changes in the time domain of the phase currents cancel each other after the fault, and the time domain fluctuations of the stator branch currents that do not cancel each other are chosen as the characteristics of the fault classification in this paper. Secondly, after signal preprocessing, feature factors are extracted and several fault feature factors with large differences are selected to construct feature vectors. Finally, a genetic algorithm is used to optimize the parameters of a support vector machine (SVM), and the GA-SVM model is constructed as a classifier for multifault classification of permanent magnet synchronous motors to classify these three types of faults. The fault classification results show that the proposed method using branch current signals combined with GA-SVM can effectively diagnose faulty PMSM. |
doi_str_mv | 10.3390/act12040145 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2dfb9511e03449cf88f554911b3399d2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747306823</galeid><doaj_id>oai_doaj_org_article_2dfb9511e03449cf88f554911b3399d2</doaj_id><sourcerecordid>A747306823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373</originalsourceid><addsrcrecordid>eNpNUctOWzEQvUJFAlFW_QFLXVaB8eteexlCeUiJQLSsrbl-BEfBBvtmwd9jmgoxs5jR6JyjmTld94PCGecaztFOlIEAKuRBd8xg6GegmPz2pT_qTmvdQAtNuQJ-3D0-5CkXcoW77VTJZcR1yjVWEhO5X_1ZVXKB1TuSE7komOwTWexK8Wki84Tbtw8kJkdWaJ9i8mTpsaSY1t-7w4Db6k__15Pu8er338XNbHl3fbuYL2dWAJ9menSWcQioUSnZtw1Vr1XQwHActBL9ADB4qSxTDF2g1PWWSRXCiL3mfOAn3e1e12XcmJcSn7G8mYzR_BvksjZYpmi33jAXRi0p9cCF0DYoFaQUmtKxPU871rR-7rVeSn7d-TqZTd6VdmU1TEEvhByEbKizPWqNTTSmkKeCtqXzz9Hm5ENs8_kgBg69YrwRfu0JtuRaiw-fa1IwH76ZL77xdzCChvY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806445745</pqid></control><display><type>article</type><title>Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning</title><source>Publicly Available Content Database</source><creator>Yu, Yinquan ; Gao, Haixi ; Zhou, Shaowei ; Pan, Yue ; Zhang, Kunpeng ; Liu, Peng ; Yang, Hui ; Zhao, Zhao ; Madyira, Daniel Makundwaneyi</creator><creatorcontrib>Yu, Yinquan ; Gao, Haixi ; Zhou, Shaowei ; Pan, Yue ; Zhang, Kunpeng ; Liu, Peng ; Yang, Hui ; Zhao, Zhao ; Madyira, Daniel Makundwaneyi</creatorcontrib><description>To solve the problem that it is difficult to accurately identify the rotor eccentric fault, demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault based on the combination of branch current analysis and a machine learning algorithm. First, the analysis of the electrical signal of the PMSM after various types of rotor faults shows that there are differences in the time domain of the electrical signal of the PMSM after three types of rotor faults. Considering the symmetry of the structure of the PMSM with a slot-pole ratio of 3/2 and its integer multiples, the changes in the time domain of the phase currents cancel each other after the fault, and the time domain fluctuations of the stator branch currents that do not cancel each other are chosen as the characteristics of the fault classification in this paper. Secondly, after signal preprocessing, feature factors are extracted and several fault feature factors with large differences are selected to construct feature vectors. Finally, a genetic algorithm is used to optimize the parameters of a support vector machine (SVM), and the GA-SVM model is constructed as a classifier for multifault classification of permanent magnet synchronous motors to classify these three types of faults. The fault classification results show that the proposed method using branch current signals combined with GA-SVM can effectively diagnose faulty PMSM.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act12040145</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; branch current analysis ; Classification ; Data mining ; Deep learning ; Discriminant analysis ; Electric properties ; Fault diagnosis ; Faults ; GA-SVM ; Genetic algorithms ; Identification methods ; Machine learning ; Magnets, Permanent ; Methods ; Neural networks ; Optimization ; permanent magnet synchronous motor (PMSM) ; Permanent magnets ; Rotors ; support vector machine (SVM) ; Support vector machines ; Synchronous motors ; Time domain analysis ; Wavelet transforms</subject><ispartof>Actuators, 2023-04, Vol.12 (4), p.145</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373</citedby><cites>FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373</cites><orcidid>0000-0002-7424-2753 ; 0000-0002-2840-1311 ; 0000-0003-3176-1913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806445745/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806445745?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yu, Yinquan</creatorcontrib><creatorcontrib>Gao, Haixi</creatorcontrib><creatorcontrib>Zhou, Shaowei</creatorcontrib><creatorcontrib>Pan, Yue</creatorcontrib><creatorcontrib>Zhang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Zhao, Zhao</creatorcontrib><creatorcontrib>Madyira, Daniel Makundwaneyi</creatorcontrib><title>Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning</title><title>Actuators</title><description>To solve the problem that it is difficult to accurately identify the rotor eccentric fault, demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault based on the combination of branch current analysis and a machine learning algorithm. First, the analysis of the electrical signal of the PMSM after various types of rotor faults shows that there are differences in the time domain of the electrical signal of the PMSM after three types of rotor faults. Considering the symmetry of the structure of the PMSM with a slot-pole ratio of 3/2 and its integer multiples, the changes in the time domain of the phase currents cancel each other after the fault, and the time domain fluctuations of the stator branch currents that do not cancel each other are chosen as the characteristics of the fault classification in this paper. Secondly, after signal preprocessing, feature factors are extracted and several fault feature factors with large differences are selected to construct feature vectors. Finally, a genetic algorithm is used to optimize the parameters of a support vector machine (SVM), and the GA-SVM model is constructed as a classifier for multifault classification of permanent magnet synchronous motors to classify these three types of faults. The fault classification results show that the proposed method using branch current signals combined with GA-SVM can effectively diagnose faulty PMSM.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>branch current analysis</subject><subject>Classification</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Electric properties</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>GA-SVM</subject><subject>Genetic algorithms</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Magnets, Permanent</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Synchronous motors</subject><subject>Time domain analysis</subject><subject>Wavelet transforms</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOWzEQvUJFAlFW_QFLXVaB8eteexlCeUiJQLSsrbl-BEfBBvtmwd9jmgoxs5jR6JyjmTld94PCGecaztFOlIEAKuRBd8xg6GegmPz2pT_qTmvdQAtNuQJ-3D0-5CkXcoW77VTJZcR1yjVWEhO5X_1ZVXKB1TuSE7komOwTWexK8Wki84Tbtw8kJkdWaJ9i8mTpsaSY1t-7w4Db6k__15Pu8er338XNbHl3fbuYL2dWAJ9menSWcQioUSnZtw1Vr1XQwHActBL9ADB4qSxTDF2g1PWWSRXCiL3mfOAn3e1e12XcmJcSn7G8mYzR_BvksjZYpmi33jAXRi0p9cCF0DYoFaQUmtKxPU871rR-7rVeSn7d-TqZTd6VdmU1TEEvhByEbKizPWqNTTSmkKeCtqXzz9Hm5ENs8_kgBg69YrwRfu0JtuRaiw-fa1IwH76ZL77xdzCChvY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yu, Yinquan</creator><creator>Gao, Haixi</creator><creator>Zhou, Shaowei</creator><creator>Pan, Yue</creator><creator>Zhang, Kunpeng</creator><creator>Liu, Peng</creator><creator>Yang, Hui</creator><creator>Zhao, Zhao</creator><creator>Madyira, Daniel Makundwaneyi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7424-2753</orcidid><orcidid>https://orcid.org/0000-0002-2840-1311</orcidid><orcidid>https://orcid.org/0000-0003-3176-1913</orcidid></search><sort><creationdate>20230401</creationdate><title>Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning</title><author>Yu, Yinquan ; Gao, Haixi ; Zhou, Shaowei ; Pan, Yue ; Zhang, Kunpeng ; Liu, Peng ; Yang, Hui ; Zhao, Zhao ; Madyira, Daniel Makundwaneyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>branch current analysis</topic><topic>Classification</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Electric properties</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>GA-SVM</topic><topic>Genetic algorithms</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Magnets, Permanent</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Synchronous motors</topic><topic>Time domain analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yinquan</creatorcontrib><creatorcontrib>Gao, Haixi</creatorcontrib><creatorcontrib>Zhou, Shaowei</creatorcontrib><creatorcontrib>Pan, Yue</creatorcontrib><creatorcontrib>Zhang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Zhao, Zhao</creatorcontrib><creatorcontrib>Madyira, Daniel Makundwaneyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yinquan</au><au>Gao, Haixi</au><au>Zhou, Shaowei</au><au>Pan, Yue</au><au>Zhang, Kunpeng</au><au>Liu, Peng</au><au>Yang, Hui</au><au>Zhao, Zhao</au><au>Madyira, Daniel Makundwaneyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning</atitle><jtitle>Actuators</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>145</spage><pages>145-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>To solve the problem that it is difficult to accurately identify the rotor eccentric fault, demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault based on the combination of branch current analysis and a machine learning algorithm. First, the analysis of the electrical signal of the PMSM after various types of rotor faults shows that there are differences in the time domain of the electrical signal of the PMSM after three types of rotor faults. Considering the symmetry of the structure of the PMSM with a slot-pole ratio of 3/2 and its integer multiples, the changes in the time domain of the phase currents cancel each other after the fault, and the time domain fluctuations of the stator branch currents that do not cancel each other are chosen as the characteristics of the fault classification in this paper. Secondly, after signal preprocessing, feature factors are extracted and several fault feature factors with large differences are selected to construct feature vectors. Finally, a genetic algorithm is used to optimize the parameters of a support vector machine (SVM), and the GA-SVM model is constructed as a classifier for multifault classification of permanent magnet synchronous motors to classify these three types of faults. The fault classification results show that the proposed method using branch current signals combined with GA-SVM can effectively diagnose faulty PMSM.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act12040145</doi><orcidid>https://orcid.org/0000-0002-7424-2753</orcidid><orcidid>https://orcid.org/0000-0002-2840-1311</orcidid><orcidid>https://orcid.org/0000-0003-3176-1913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0825 |
ispartof | Actuators, 2023-04, Vol.12 (4), p.145 |
issn | 2076-0825 2076-0825 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2dfb9511e03449cf88f554911b3399d2 |
source | Publicly Available Content Database |
subjects | Algorithms Analysis Artificial intelligence branch current analysis Classification Data mining Deep learning Discriminant analysis Electric properties Fault diagnosis Faults GA-SVM Genetic algorithms Identification methods Machine learning Magnets, Permanent Methods Neural networks Optimization permanent magnet synchronous motor (PMSM) Permanent magnets Rotors support vector machine (SVM) Support vector machines Synchronous motors Time domain analysis Wavelet transforms |
title | Rotor Faults Diagnosis in PMSMs Based on Branch Current Analysis and Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotor%20Faults%20Diagnosis%20in%20PMSMs%20Based%20on%20Branch%20Current%20Analysis%20and%20Machine%20Learning&rft.jtitle=Actuators&rft.au=Yu,%20Yinquan&rft.date=2023-04-01&rft.volume=12&rft.issue=4&rft.spage=145&rft.pages=145-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act12040145&rft_dat=%3Cgale_doaj_%3EA747306823%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-9bdc230fa9a88560828698f902ab798467007e58c282adf11d6c258ffba693373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806445745&rft_id=info:pmid/&rft_galeid=A747306823&rfr_iscdi=true |