Loading…
Synthesis and Characterization in Rodent Brain of the Subtype-Selective NR2B NMDA Receptor Ligand [11C]Ro04-5595 as a Potential Radiotracer for Positron Emission Tomography
The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in controlling synaptic plasticity, memory, and learning. Herein, we describe an 11C-labeled PET radiotracer based on 1-(4-chlorophenethyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol, Ro04-5595. The radiotrac...
Saved in:
Published in: | ACS omega 2019-06, Vol.4 (6), p.9925-9931 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in controlling synaptic plasticity, memory, and learning. Herein, we describe an 11C-labeled PET radiotracer based on 1-(4-chlorophenethyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol, Ro04-5595. The radiotracer was evaluated in rats using PET. The PET study showed a good pharmacokinetic profile with rapid uptake and washout over 90 min. Complementary high-resolution autoradiographic images using [3H]Ro04-5595 demonstrated strong binding in NR2B receptor-rich regions and low binding in cerebellum where NR2B concentration is low. We conclude to have developed a selective NR2B receptor radioligand suitable for quantitative and qualitative imaging of a NR2B receptor distribution in vitro and in vivo. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b00357 |