Loading…

Synthesis and Characterization in Rodent Brain of the Subtype-Selective NR2B NMDA Receptor Ligand [11C]Ro04-5595 as a Potential Radiotracer for Positron Emission Tomography

The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in controlling synaptic plasticity, memory, and learning. Herein, we describe an 11C-labeled PET radiotracer based on 1-(4-chlorophenethyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol, Ro04-5595. The radiotrac...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2019-06, Vol.4 (6), p.9925-9931
Main Authors: Jakobsson, Jimmy E, Gourni, Eleni, Khanapur, Shivashankar, Brito, Beatriz, Riss, Patrick J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in controlling synaptic plasticity, memory, and learning. Herein, we describe an 11C-labeled PET radiotracer based on 1-(4-chlorophenethyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol, Ro04-5595. The radiotracer was evaluated in rats using PET. The PET study showed a good pharmacokinetic profile with rapid uptake and washout over 90 min. Complementary high-resolution autoradiographic images using [3H]­Ro04-5595 demonstrated strong binding in NR2B receptor-rich regions and low binding in cerebellum where NR2B concentration is low. We conclude to have developed a selective NR2B receptor radioligand suitable for quantitative and qualitative imaging of a NR2B receptor distribution in vitro and in vivo.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b00357