Loading…

A new Riemann–Liouville type fractional derivative operator and its application in generating functions

Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three var...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2018-05, Vol.2018 (1), p.1-16, Article 167
Main Authors: Shadab, M., Khan, M. Faisal, Lopez-Bonilla, J. Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93
cites cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93
container_end_page 16
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2018
creator Shadab, M.
Khan, M. Faisal
Lopez-Bonilla, J. Luis
description Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.
doi_str_mv 10.1186/s13662-018-1616-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b</doaj_id><sourcerecordid>2036387293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</originalsourceid><addsrcrecordid>eNp1kctq3TAQhk1oIWnSB8hO0LVb62ppGUIvgQOBkKzFWB4ddHAkR_I5Jbu-Q98wTxI7Dmk3Wc0wfPON0F9V57T5SqlW3wrlSrG6obqmiqraHFUnVOm2plq0H_7rj6tPpeyahhmh9UkVLkjE3-Qm4D3E-PTn7yak_SEMA5LpcUTiM7gppAgD6TGHA0zhgCSNmGFKmUDsSZgKgXEcgoOFJCGSLcYFCHFL_D6-CMpZ9dHDUPDzaz2t7n58v738VW-uf15dXmxqJ5icasOFUKznGhzzjeqdocI41OC5YOil4l0nqREADubaeuYVp0K1yJBJZ_hpdbV6-wQ7O-ZwD_nRJgj2ZZDy1kKeghvQMqSe8V7KTuIiN918QLa6V5KibLvZ9WV1jTk97LFMdpf2ef6MYlnDFdctM3ym6Eq5nErJ6N-u0sYu6dg1HTunY5d07PJKtu6UmY1bzP_M7y89A4rYlIE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036387293</pqid></control><display><type>article</type><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</creator><creatorcontrib>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</creatorcontrib><description>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1616-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Difference and Functional Equations ; Extended Appell functions ; Extended beta function ; Extended Lauricella function ; Functional Analysis ; Generating function ; Hypergeometric functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mellin Transform ; Mellin transforms ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Riemann–Liouville fractional derivative operator</subject><ispartof>Advances in difference equations, 2018-05, Vol.2018 (1), p.1-16, Article 167</ispartof><rights>The Author(s) 2018</rights><rights>Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</citedby><cites>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2036387293/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2036387293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Shadab, M.</creatorcontrib><creatorcontrib>Khan, M. Faisal</creatorcontrib><creatorcontrib>Lopez-Bonilla, J. Luis</creatorcontrib><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</description><subject>Analysis</subject><subject>Difference and Functional Equations</subject><subject>Extended Appell functions</subject><subject>Extended beta function</subject><subject>Extended Lauricella function</subject><subject>Functional Analysis</subject><subject>Generating function</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin Transform</subject><subject>Mellin transforms</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Riemann–Liouville fractional derivative operator</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctq3TAQhk1oIWnSB8hO0LVb62ppGUIvgQOBkKzFWB4ddHAkR_I5Jbu-Q98wTxI7Dmk3Wc0wfPON0F9V57T5SqlW3wrlSrG6obqmiqraHFUnVOm2plq0H_7rj6tPpeyahhmh9UkVLkjE3-Qm4D3E-PTn7yak_SEMA5LpcUTiM7gppAgD6TGHA0zhgCSNmGFKmUDsSZgKgXEcgoOFJCGSLcYFCHFL_D6-CMpZ9dHDUPDzaz2t7n58v738VW-uf15dXmxqJ5icasOFUKznGhzzjeqdocI41OC5YOil4l0nqREADubaeuYVp0K1yJBJZ_hpdbV6-wQ7O-ZwD_nRJgj2ZZDy1kKeghvQMqSe8V7KTuIiN918QLa6V5KibLvZ9WV1jTk97LFMdpf2ef6MYlnDFdctM3ym6Eq5nErJ6N-u0sYu6dg1HTunY5d07PJKtu6UmY1bzP_M7y89A4rYlIE</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Shadab, M.</creator><creator>Khan, M. Faisal</creator><creator>Lopez-Bonilla, J. Luis</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20180508</creationdate><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><author>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Difference and Functional Equations</topic><topic>Extended Appell functions</topic><topic>Extended beta function</topic><topic>Extended Lauricella function</topic><topic>Functional Analysis</topic><topic>Generating function</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin Transform</topic><topic>Mellin transforms</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Riemann–Liouville fractional derivative operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadab, M.</creatorcontrib><creatorcontrib>Khan, M. Faisal</creatorcontrib><creatorcontrib>Lopez-Bonilla, J. Luis</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadab, M.</au><au>Khan, M. Faisal</au><au>Lopez-Bonilla, J. Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-05-08</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>167</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1616-9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2018-05, Vol.2018 (1), p.1-16, Article 167
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Analysis
Difference and Functional Equations
Extended Appell functions
Extended beta function
Extended Lauricella function
Functional Analysis
Generating function
Hypergeometric functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Mellin Transform
Mellin transforms
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
Riemann–Liouville fractional derivative operator
title A new Riemann–Liouville type fractional derivative operator and its application in generating functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20Riemann%E2%80%93Liouville%20type%20fractional%20derivative%20operator%20and%20its%20application%20in%20generating%20functions&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Shadab,%20M.&rft.date=2018-05-08&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=167&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1616-9&rft_dat=%3Cproquest_doaj_%3E2036387293%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036387293&rft_id=info:pmid/&rfr_iscdi=true