Loading…
A new Riemann–Liouville type fractional derivative operator and its application in generating functions
Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three var...
Saved in:
Published in: | Advances in difference equations 2018-05, Vol.2018 (1), p.1-16, Article 167 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2018 |
creator | Shadab, M. Khan, M. Faisal Lopez-Bonilla, J. Luis |
description | Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator. |
doi_str_mv | 10.1186/s13662-018-1616-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b</doaj_id><sourcerecordid>2036387293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</originalsourceid><addsrcrecordid>eNp1kctq3TAQhk1oIWnSB8hO0LVb62ppGUIvgQOBkKzFWB4ddHAkR_I5Jbu-Q98wTxI7Dmk3Wc0wfPON0F9V57T5SqlW3wrlSrG6obqmiqraHFUnVOm2plq0H_7rj6tPpeyahhmh9UkVLkjE3-Qm4D3E-PTn7yak_SEMA5LpcUTiM7gppAgD6TGHA0zhgCSNmGFKmUDsSZgKgXEcgoOFJCGSLcYFCHFL_D6-CMpZ9dHDUPDzaz2t7n58v738VW-uf15dXmxqJ5icasOFUKznGhzzjeqdocI41OC5YOil4l0nqREADubaeuYVp0K1yJBJZ_hpdbV6-wQ7O-ZwD_nRJgj2ZZDy1kKeghvQMqSe8V7KTuIiN918QLa6V5KibLvZ9WV1jTk97LFMdpf2ef6MYlnDFdctM3ym6Eq5nErJ6N-u0sYu6dg1HTunY5d07PJKtu6UmY1bzP_M7y89A4rYlIE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036387293</pqid></control><display><type>article</type><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</creator><creatorcontrib>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</creatorcontrib><description>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1616-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Difference and Functional Equations ; Extended Appell functions ; Extended beta function ; Extended Lauricella function ; Functional Analysis ; Generating function ; Hypergeometric functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mellin Transform ; Mellin transforms ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Riemann–Liouville fractional derivative operator</subject><ispartof>Advances in difference equations, 2018-05, Vol.2018 (1), p.1-16, Article 167</ispartof><rights>The Author(s) 2018</rights><rights>Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</citedby><cites>FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2036387293/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2036387293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Shadab, M.</creatorcontrib><creatorcontrib>Khan, M. Faisal</creatorcontrib><creatorcontrib>Lopez-Bonilla, J. Luis</creatorcontrib><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</description><subject>Analysis</subject><subject>Difference and Functional Equations</subject><subject>Extended Appell functions</subject><subject>Extended beta function</subject><subject>Extended Lauricella function</subject><subject>Functional Analysis</subject><subject>Generating function</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin Transform</subject><subject>Mellin transforms</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Riemann–Liouville fractional derivative operator</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctq3TAQhk1oIWnSB8hO0LVb62ppGUIvgQOBkKzFWB4ddHAkR_I5Jbu-Q98wTxI7Dmk3Wc0wfPON0F9V57T5SqlW3wrlSrG6obqmiqraHFUnVOm2plq0H_7rj6tPpeyahhmh9UkVLkjE3-Qm4D3E-PTn7yak_SEMA5LpcUTiM7gppAgD6TGHA0zhgCSNmGFKmUDsSZgKgXEcgoOFJCGSLcYFCHFL_D6-CMpZ9dHDUPDzaz2t7n58v738VW-uf15dXmxqJ5icasOFUKznGhzzjeqdocI41OC5YOil4l0nqREADubaeuYVp0K1yJBJZ_hpdbV6-wQ7O-ZwD_nRJgj2ZZDy1kKeghvQMqSe8V7KTuIiN918QLa6V5KibLvZ9WV1jTk97LFMdpf2ef6MYlnDFdctM3ym6Eq5nErJ6N-u0sYu6dg1HTunY5d07PJKtu6UmY1bzP_M7y89A4rYlIE</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Shadab, M.</creator><creator>Khan, M. Faisal</creator><creator>Lopez-Bonilla, J. Luis</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20180508</creationdate><title>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</title><author>Shadab, M. ; Khan, M. Faisal ; Lopez-Bonilla, J. Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Difference and Functional Equations</topic><topic>Extended Appell functions</topic><topic>Extended beta function</topic><topic>Extended Lauricella function</topic><topic>Functional Analysis</topic><topic>Generating function</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin Transform</topic><topic>Mellin transforms</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Riemann–Liouville fractional derivative operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadab, M.</creatorcontrib><creatorcontrib>Khan, M. Faisal</creatorcontrib><creatorcontrib>Lopez-Bonilla, J. Luis</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadab, M.</au><au>Khan, M. Faisal</au><au>Lopez-Bonilla, J. Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new Riemann–Liouville type fractional derivative operator and its application in generating functions</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-05-08</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>167</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1616-9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2018-05, Vol.2018 (1), p.1-16, Article 167 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2e1f23d55b5e42ef9bef5578d651e57b |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Analysis Difference and Functional Equations Extended Appell functions Extended beta function Extended Lauricella function Functional Analysis Generating function Hypergeometric functions Mathematical analysis Mathematics Mathematics and Statistics Mellin Transform Mellin transforms Operators (mathematics) Ordinary Differential Equations Partial Differential Equations Riemann–Liouville fractional derivative operator |
title | A new Riemann–Liouville type fractional derivative operator and its application in generating functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20Riemann%E2%80%93Liouville%20type%20fractional%20derivative%20operator%20and%20its%20application%20in%20generating%20functions&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Shadab,%20M.&rft.date=2018-05-08&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=167&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1616-9&rft_dat=%3Cproquest_doaj_%3E2036387293%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-934462d38ac2f06dc9149ce8af342ef563bb5194aaca5197f2f631467e2e25c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036387293&rft_id=info:pmid/&rfr_iscdi=true |