Loading…
Static Hand Gesture Recognition Based on Convolutional Neural Networks
This paper proposes a gesture recognition method using convolutional neural networks. The procedure involves the application of morphological filters, contour generation, polygonal approximation, and segmentation during preprocessing, in which they contribute to a better feature extraction. Training...
Saved in:
Published in: | Journal of electrical and computer engineering 2019, Vol.2019 (2019), p.1-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a gesture recognition method using convolutional neural networks. The procedure involves the application of morphological filters, contour generation, polygonal approximation, and segmentation during preprocessing, in which they contribute to a better feature extraction. Training and testing are performed with different convolutional neural networks, compared with architectures known in the literature and with other known methodologies. All calculated metrics and convergence graphs obtained during training are analyzed and discussed to validate the robustness of the proposed method. |
---|---|
ISSN: | 2090-0147 2090-0155 |
DOI: | 10.1155/2019/4167890 |