Loading…
An unconstrained approach to systematic structural and energetic screening of materials interfaces
From grain boundaries and heterojunctions to manipulating 2D materials, solid-solid interfaces play a key role in many technological applications. Understanding and predicting properties of these complex systems present an ongoing and increasingly important challenge. Over the last few decades compu...
Saved in:
Published in: | Nature communications 2022-10, Vol.13 (1), p.6236-10, Article 6236 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | From grain boundaries and heterojunctions to manipulating 2D materials, solid-solid interfaces play a key role in many technological applications. Understanding and predicting properties of these complex systems present an ongoing and increasingly important challenge. Over the last few decades computer simulation of interfaces has become vastly more powerful and sophisticated. However, theoretical interface screening remains based on largely heuristic methods and is strongly biased to systems that are amenable to modelling within constrained periodic cell approaches. Here we present an unconstrained and generally applicable non-periodic screening approach for systematic exploration of material’s interfaces based on extracting and aligning disks from periodic reference slabs. Our disk interface method directly and accurately describes how interface structure and energetic stability depends on arbitrary relative displacements and twist angles of two interacting surfaces. The resultant detailed and comprehensive energetic stability maps provide a global perspective for understanding and designing interfaces. We confirm the power and utility of our method with respect to the catalytically important TiO
2
anatase (101)/(001) and TiO
2
anatase (101)/rutile (110) interfaces.
Predicting structures and stabilities of solid-solid interfaces presents an ongoing and increasingly important challenge for development of new technologies. Here authors report an unconstrained and generally applicable non-periodic screening method for systematic exploration of material´s interfaces. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-33414-6 |