Loading…

AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)

Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organi...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2021-01, Vol.4 (1), p.100-100, Article 100
Main Authors: Rook, Noemi, Tuff, John Michael, Isparta, Sevim, Masseck, Olivia Andrea, Herlitze, Stefan, Güntürkün, Onur, Pusch, Roland
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3
cites cdi_FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3
container_end_page 100
container_issue 1
container_start_page 100
container_title Communications biology
container_volume 4
creator Rook, Noemi
Tuff, John Michael
Isparta, Sevim
Masseck, Olivia Andrea
Herlitze, Stefan
Güntürkün, Onur
Pusch, Roland
description Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons’ contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds. Rook et al. establish a viral gene transfer system to perform optogenetics in pigeons. They deliver ChR2 via AAV1 into the visual entopallium and show its behavioral relevance for contrast perception, verifying the applicability of optogenetics in an avian species.
doi_str_mv 10.1038/s42003-020-01595-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e45222872cd435fb370b53471415722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e45222872cd435fb370b53471415722</doaj_id><sourcerecordid>2479911021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3</originalsourceid><addsrcrecordid>eNp9kktv1DAQxyMEolXpF-CALHEph8D4lcQXpNWKlkqVuPA4Wo49Sb1K4mBnV-Xb4zaltBw4-Dn_-XlmPEXxmsJ7Crz5kAQD4CUwKIFKJUv1rDhmXKmSV4I9f7Q_Kk5T2gEAVUpVXLwsjjgXDa84Oy5-bDbfKfGJLNdIwrz40Qzk4OPtjHYJkXR5ZEPoccLFW4I3M0Y_4rQk4icy-x7DlMjZNgz7sTVk8Adv3r0qXnRmSHh6v54U384_fd1-Lq--XFxuN1elraBaytpWxuQcuHUNdaqmzNaUtsYZaUEqZF2rBBXW5rPrjJOslY1zgM5RBNfxk-Jy5bpgdnrOgZn4Swfj9d1FiL02MYc9oGYoJGOsqZl1gsuu5TW0kouaCiprxjLr48qa9-2IzuYUcx2eQJ9aJn-t-3DQdZOxFWTA2T0ghp97TIsefbI4DGbCsE-aiQaEhIZWWfr2H-ku7OOUS5VVtVKUAqNZxVaVjSGliN1DMBT0bRvotQ10LqG-awOtstObx2k8uPz59CzgqyBl09Rj_Pv2f7C_AfJcvPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479911021</pqid></control><display><type>article</type><title>AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rook, Noemi ; Tuff, John Michael ; Isparta, Sevim ; Masseck, Olivia Andrea ; Herlitze, Stefan ; Güntürkün, Onur ; Pusch, Roland</creator><creatorcontrib>Rook, Noemi ; Tuff, John Michael ; Isparta, Sevim ; Masseck, Olivia Andrea ; Herlitze, Stefan ; Güntürkün, Onur ; Pusch, Roland</creatorcontrib><description>Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons’ contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds. Rook et al. establish a viral gene transfer system to perform optogenetics in pigeons. They deliver ChR2 via AAV1 into the visual entopallium and show its behavioral relevance for contrast perception, verifying the applicability of optogenetics in an avian species.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-01595-9</identifier><identifier>PMID: 33483632</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/63 ; 42 ; 631/1647/2253 ; 631/1647/2300 ; 631/378/2613 ; 631/378/2649/1723 ; Animals ; Anterograde transport ; Biology ; Biomedical and Life Sciences ; Birds ; Channelrhodopsins - metabolism ; Cognitive ability ; Columbidae - genetics ; Dependovirus ; Gene transfer ; Genetics ; Information processing ; Life Sciences ; Nervous system ; Optics ; Optogenetics ; Perception ; Retrograde transport ; Telencephalon - metabolism ; Trinucleotide repeats ; Vectors (Biology) ; Visual discrimination</subject><ispartof>Communications biology, 2021-01, Vol.4 (1), p.100-100, Article 100</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3</citedby><cites>FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3</cites><orcidid>0000-0002-2415-2813 ; 0000-0002-1575-7861 ; 0000-0002-1541-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822860/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2479911021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33483632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rook, Noemi</creatorcontrib><creatorcontrib>Tuff, John Michael</creatorcontrib><creatorcontrib>Isparta, Sevim</creatorcontrib><creatorcontrib>Masseck, Olivia Andrea</creatorcontrib><creatorcontrib>Herlitze, Stefan</creatorcontrib><creatorcontrib>Güntürkün, Onur</creatorcontrib><creatorcontrib>Pusch, Roland</creatorcontrib><title>AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons’ contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds. Rook et al. establish a viral gene transfer system to perform optogenetics in pigeons. They deliver ChR2 via AAV1 into the visual entopallium and show its behavioral relevance for contrast perception, verifying the applicability of optogenetics in an avian species.</description><subject>13/51</subject><subject>14/63</subject><subject>42</subject><subject>631/1647/2253</subject><subject>631/1647/2300</subject><subject>631/378/2613</subject><subject>631/378/2649/1723</subject><subject>Animals</subject><subject>Anterograde transport</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Birds</subject><subject>Channelrhodopsins - metabolism</subject><subject>Cognitive ability</subject><subject>Columbidae - genetics</subject><subject>Dependovirus</subject><subject>Gene transfer</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Nervous system</subject><subject>Optics</subject><subject>Optogenetics</subject><subject>Perception</subject><subject>Retrograde transport</subject><subject>Telencephalon - metabolism</subject><subject>Trinucleotide repeats</subject><subject>Vectors (Biology)</subject><subject>Visual discrimination</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQxyMEolXpF-CALHEph8D4lcQXpNWKlkqVuPA4Wo49Sb1K4mBnV-Xb4zaltBw4-Dn_-XlmPEXxmsJ7Crz5kAQD4CUwKIFKJUv1rDhmXKmSV4I9f7Q_Kk5T2gEAVUpVXLwsjjgXDa84Oy5-bDbfKfGJLNdIwrz40Qzk4OPtjHYJkXR5ZEPoccLFW4I3M0Y_4rQk4icy-x7DlMjZNgz7sTVk8Adv3r0qXnRmSHh6v54U384_fd1-Lq--XFxuN1elraBaytpWxuQcuHUNdaqmzNaUtsYZaUEqZF2rBBXW5rPrjJOslY1zgM5RBNfxk-Jy5bpgdnrOgZn4Swfj9d1FiL02MYc9oGYoJGOsqZl1gsuu5TW0kouaCiprxjLr48qa9-2IzuYUcx2eQJ9aJn-t-3DQdZOxFWTA2T0ghp97TIsefbI4DGbCsE-aiQaEhIZWWfr2H-ku7OOUS5VVtVKUAqNZxVaVjSGliN1DMBT0bRvotQ10LqG-awOtstObx2k8uPz59CzgqyBl09Rj_Pv2f7C_AfJcvPw</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Rook, Noemi</creator><creator>Tuff, John Michael</creator><creator>Isparta, Sevim</creator><creator>Masseck, Olivia Andrea</creator><creator>Herlitze, Stefan</creator><creator>Güntürkün, Onur</creator><creator>Pusch, Roland</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2415-2813</orcidid><orcidid>https://orcid.org/0000-0002-1575-7861</orcidid><orcidid>https://orcid.org/0000-0002-1541-2388</orcidid></search><sort><creationdate>20210122</creationdate><title>AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)</title><author>Rook, Noemi ; Tuff, John Michael ; Isparta, Sevim ; Masseck, Olivia Andrea ; Herlitze, Stefan ; Güntürkün, Onur ; Pusch, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/51</topic><topic>14/63</topic><topic>42</topic><topic>631/1647/2253</topic><topic>631/1647/2300</topic><topic>631/378/2613</topic><topic>631/378/2649/1723</topic><topic>Animals</topic><topic>Anterograde transport</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Birds</topic><topic>Channelrhodopsins - metabolism</topic><topic>Cognitive ability</topic><topic>Columbidae - genetics</topic><topic>Dependovirus</topic><topic>Gene transfer</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Nervous system</topic><topic>Optics</topic><topic>Optogenetics</topic><topic>Perception</topic><topic>Retrograde transport</topic><topic>Telencephalon - metabolism</topic><topic>Trinucleotide repeats</topic><topic>Vectors (Biology)</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rook, Noemi</creatorcontrib><creatorcontrib>Tuff, John Michael</creatorcontrib><creatorcontrib>Isparta, Sevim</creatorcontrib><creatorcontrib>Masseck, Olivia Andrea</creatorcontrib><creatorcontrib>Herlitze, Stefan</creatorcontrib><creatorcontrib>Güntürkün, Onur</creatorcontrib><creatorcontrib>Pusch, Roland</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rook, Noemi</au><au>Tuff, John Michael</au><au>Isparta, Sevim</au><au>Masseck, Olivia Andrea</au><au>Herlitze, Stefan</au><au>Güntürkün, Onur</au><au>Pusch, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>100</spage><epage>100</epage><pages>100-100</pages><artnum>100</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons’ contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds. Rook et al. establish a viral gene transfer system to perform optogenetics in pigeons. They deliver ChR2 via AAV1 into the visual entopallium and show its behavioral relevance for contrast perception, verifying the applicability of optogenetics in an avian species.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33483632</pmid><doi>10.1038/s42003-020-01595-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2415-2813</orcidid><orcidid>https://orcid.org/0000-0002-1575-7861</orcidid><orcidid>https://orcid.org/0000-0002-1541-2388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2021-01, Vol.4 (1), p.100-100, Article 100
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e45222872cd435fb370b53471415722
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/51
14/63
42
631/1647/2253
631/1647/2300
631/378/2613
631/378/2649/1723
Animals
Anterograde transport
Biology
Biomedical and Life Sciences
Birds
Channelrhodopsins - metabolism
Cognitive ability
Columbidae - genetics
Dependovirus
Gene transfer
Genetics
Information processing
Life Sciences
Nervous system
Optics
Optogenetics
Perception
Retrograde transport
Telencephalon - metabolism
Trinucleotide repeats
Vectors (Biology)
Visual discrimination
title AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAV1%20is%20the%20optimal%20viral%20vector%20for%20optogenetic%20experiments%20in%20pigeons%20(Columba%20livia)&rft.jtitle=Communications%20biology&rft.au=Rook,%20Noemi&rft.date=2021-01-22&rft.volume=4&rft.issue=1&rft.spage=100&rft.epage=100&rft.pages=100-100&rft.artnum=100&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-01595-9&rft_dat=%3Cproquest_doaj_%3E2479911021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-7c6aa0203cd81d9712c711bada5c059e2fb9414cca5cdfad52b58dd0edd1e0df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2479911021&rft_id=info:pmid/33483632&rfr_iscdi=true