Loading…

Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults

Colibactin-producing Escherichia coli containing polyketide synthase (pks.sup.+E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal...

Full description

Saved in:
Bibliographic Details
Published in:BMC microbiology 2021-06, Vol.21 (1), p.1-196, Article 196
Main Authors: Watanabe, Daiki, Murakami, Haruka, Ohno, Harumi, Tanisawa, Kumpei, Konishi, Kana, Todoroki-Mori, Kikue, Tsunematsu, Yuta, Sato, Michio, Ogata, Yuji, Miyoshi, Noriyuki, Kubota, Naoto, Kunisawa, Jun, Wakabayashi, Keiji, Kubota, Tetsuya, Watanabe, Kenji, Miyachi, Motohiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403
cites cdi_FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403
container_end_page 196
container_issue 1
container_start_page 1
container_title BMC microbiology
container_volume 21
creator Watanabe, Daiki
Murakami, Haruka
Ohno, Harumi
Tanisawa, Kumpei
Konishi, Kana
Todoroki-Mori, Kikue
Tsunematsu, Yuta
Sato, Michio
Ogata, Yuji
Miyoshi, Noriyuki
Kubota, Naoto
Kunisawa, Jun
Wakabayashi, Keiji
Kubota, Tetsuya
Watanabe, Kenji
Miyachi, Motohiko
description Colibactin-producing Escherichia coli containing polyketide synthase (pks.sup.+E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks.sup.+E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks.sup.+E. coli was determined by using specific primers for pks.sup.+E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks.sup.+E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks.sup.+E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and [alpha]-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.
doi_str_mv 10.1186/s12866-021-02255-6
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e48af1e61964c5a82e87ff540246cd1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666719834</galeid><doaj_id>oai_doaj_org_article_2e48af1e61964c5a82e87ff540246cd1</doaj_id><sourcerecordid>A666719834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403</originalsourceid><addsrcrecordid>eNptkt1uFCEUgCdGY2v1Bbwi8UYvtg4MA8yNSdP4s6aJidVrcpY57NIwsAJT3XfyIaW7jbrGEAI5fOeDHE7TPKftOaVKvM6UKSEWLaN1sr5fiAfNKeWSLhhV7cO_9ifNk5xv2pZK1cnHzUnHqWIDb0-bn9clRk-2UAqmQFwmkHM0DgqO5LsrGxJiITH4HSkbJNuEt-AxGCTRkjJPMbk1BmfICkw1OKiK6PfZNsWJWDTgybTXk9VcCPgcydZDnoBAGO8BW4EdAePGTFwgGwRfNjvyEbYQMCOBcfYlP20e2ZqPz-7Xs-bru7dfLj8srj69X15eXC1ML3lZiIGtoKMrJaWVHVijlDGCd1QOhg-jFKOEEVAKTgUIBNbTQaxk1w29FJS33VmzPHjHCDd6m9wEaacjOL0PxLTWkIozHjVDrsBSFFXBTQ-KoZLW9rxlXJiRVtebg2s7ryYcDYaSwB9Jj0-C2-h1vNWK1Zf0ogpe3gtS_DZjLnpy2aD3tTJxzpr1XPSDGLiq6It_0Js4p1BLVameKdq1TP6h1vUntQs21nvNnVRfCCEkHVTHK3X-H6qOESdnYkDravwo4dVRQmUK_ihrmHPWy-vPxyw7sCbFnBPa3_Wgrb7rbX3obV17W-97W4vuFwlB608</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552813027</pqid></control><display><type>article</type><title>Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Watanabe, Daiki ; Murakami, Haruka ; Ohno, Harumi ; Tanisawa, Kumpei ; Konishi, Kana ; Todoroki-Mori, Kikue ; Tsunematsu, Yuta ; Sato, Michio ; Ogata, Yuji ; Miyoshi, Noriyuki ; Kubota, Naoto ; Kunisawa, Jun ; Wakabayashi, Keiji ; Kubota, Tetsuya ; Watanabe, Kenji ; Miyachi, Motohiko</creator><creatorcontrib>Watanabe, Daiki ; Murakami, Haruka ; Ohno, Harumi ; Tanisawa, Kumpei ; Konishi, Kana ; Todoroki-Mori, Kikue ; Tsunematsu, Yuta ; Sato, Michio ; Ogata, Yuji ; Miyoshi, Noriyuki ; Kubota, Naoto ; Kunisawa, Jun ; Wakabayashi, Keiji ; Kubota, Tetsuya ; Watanabe, Kenji ; Miyachi, Motohiko</creatorcontrib><description>Colibactin-producing Escherichia coli containing polyketide synthase (pks.sup.+E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks.sup.+E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks.sup.+E. coli was determined by using specific primers for pks.sup.+E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks.sup.+E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks.sup.+E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and [alpha]-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-021-02255-6</identifier><identifier>PMID: 34182940</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Adults ; Animal models ; Bacteria ; Cancer ; Cell cycle ; Color ; Colorectal cancer ; Colorectal carcinoma ; Confidence intervals ; Cross-sectional studies ; Cross-sectional study ; Diagnosis ; E coli ; Escherichia coli infections ; Factorial analysis ; Fatty acid ; Fatty acids ; Feces ; Gas chromatography ; Gastroenteritis ; Health aspects ; Intestinal microflora ; Linoleic acid ; Mass spectrometry ; Mass spectroscopy ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Odor ; Odors ; Plasma ; Polyketide synthase ; Propionic acid ; Reproducibility ; Risk factors ; Stool pattern ; Tumorigenic bacteria</subject><ispartof>BMC microbiology, 2021-06, Vol.21 (1), p.1-196, Article 196</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403</citedby><cites>FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403</cites><orcidid>0000-0002-1146-0905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552813027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Watanabe, Daiki</creatorcontrib><creatorcontrib>Murakami, Haruka</creatorcontrib><creatorcontrib>Ohno, Harumi</creatorcontrib><creatorcontrib>Tanisawa, Kumpei</creatorcontrib><creatorcontrib>Konishi, Kana</creatorcontrib><creatorcontrib>Todoroki-Mori, Kikue</creatorcontrib><creatorcontrib>Tsunematsu, Yuta</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Ogata, Yuji</creatorcontrib><creatorcontrib>Miyoshi, Noriyuki</creatorcontrib><creatorcontrib>Kubota, Naoto</creatorcontrib><creatorcontrib>Kunisawa, Jun</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><creatorcontrib>Kubota, Tetsuya</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Miyachi, Motohiko</creatorcontrib><title>Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults</title><title>BMC microbiology</title><description>Colibactin-producing Escherichia coli containing polyketide synthase (pks.sup.+E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks.sup.+E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks.sup.+E. coli was determined by using specific primers for pks.sup.+E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks.sup.+E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks.sup.+E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and [alpha]-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.</description><subject>Adults</subject><subject>Animal models</subject><subject>Bacteria</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Color</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Confidence intervals</subject><subject>Cross-sectional studies</subject><subject>Cross-sectional study</subject><subject>Diagnosis</subject><subject>E coli</subject><subject>Escherichia coli infections</subject><subject>Factorial analysis</subject><subject>Fatty acid</subject><subject>Fatty acids</subject><subject>Feces</subject><subject>Gas chromatography</subject><subject>Gastroenteritis</subject><subject>Health aspects</subject><subject>Intestinal microflora</subject><subject>Linoleic acid</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Odor</subject><subject>Odors</subject><subject>Plasma</subject><subject>Polyketide synthase</subject><subject>Propionic acid</subject><subject>Reproducibility</subject><subject>Risk factors</subject><subject>Stool pattern</subject><subject>Tumorigenic bacteria</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt1uFCEUgCdGY2v1Bbwi8UYvtg4MA8yNSdP4s6aJidVrcpY57NIwsAJT3XfyIaW7jbrGEAI5fOeDHE7TPKftOaVKvM6UKSEWLaN1sr5fiAfNKeWSLhhV7cO_9ifNk5xv2pZK1cnHzUnHqWIDb0-bn9clRk-2UAqmQFwmkHM0DgqO5LsrGxJiITH4HSkbJNuEt-AxGCTRkjJPMbk1BmfICkw1OKiK6PfZNsWJWDTgybTXk9VcCPgcydZDnoBAGO8BW4EdAePGTFwgGwRfNjvyEbYQMCOBcfYlP20e2ZqPz-7Xs-bru7dfLj8srj69X15eXC1ML3lZiIGtoKMrJaWVHVijlDGCd1QOhg-jFKOEEVAKTgUIBNbTQaxk1w29FJS33VmzPHjHCDd6m9wEaacjOL0PxLTWkIozHjVDrsBSFFXBTQ-KoZLW9rxlXJiRVtebg2s7ryYcDYaSwB9Jj0-C2-h1vNWK1Zf0ogpe3gtS_DZjLnpy2aD3tTJxzpr1XPSDGLiq6It_0Js4p1BLVameKdq1TP6h1vUntQs21nvNnVRfCCEkHVTHK3X-H6qOESdnYkDravwo4dVRQmUK_ihrmHPWy-vPxyw7sCbFnBPa3_Wgrb7rbX3obV17W-97W4vuFwlB608</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>Watanabe, Daiki</creator><creator>Murakami, Haruka</creator><creator>Ohno, Harumi</creator><creator>Tanisawa, Kumpei</creator><creator>Konishi, Kana</creator><creator>Todoroki-Mori, Kikue</creator><creator>Tsunematsu, Yuta</creator><creator>Sato, Michio</creator><creator>Ogata, Yuji</creator><creator>Miyoshi, Noriyuki</creator><creator>Kubota, Naoto</creator><creator>Kunisawa, Jun</creator><creator>Wakabayashi, Keiji</creator><creator>Kubota, Tetsuya</creator><creator>Watanabe, Kenji</creator><creator>Miyachi, Motohiko</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1146-0905</orcidid></search><sort><creationdate>20210628</creationdate><title>Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults</title><author>Watanabe, Daiki ; Murakami, Haruka ; Ohno, Harumi ; Tanisawa, Kumpei ; Konishi, Kana ; Todoroki-Mori, Kikue ; Tsunematsu, Yuta ; Sato, Michio ; Ogata, Yuji ; Miyoshi, Noriyuki ; Kubota, Naoto ; Kunisawa, Jun ; Wakabayashi, Keiji ; Kubota, Tetsuya ; Watanabe, Kenji ; Miyachi, Motohiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adults</topic><topic>Animal models</topic><topic>Bacteria</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Color</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Confidence intervals</topic><topic>Cross-sectional studies</topic><topic>Cross-sectional study</topic><topic>Diagnosis</topic><topic>E coli</topic><topic>Escherichia coli infections</topic><topic>Factorial analysis</topic><topic>Fatty acid</topic><topic>Fatty acids</topic><topic>Feces</topic><topic>Gas chromatography</topic><topic>Gastroenteritis</topic><topic>Health aspects</topic><topic>Intestinal microflora</topic><topic>Linoleic acid</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Odor</topic><topic>Odors</topic><topic>Plasma</topic><topic>Polyketide synthase</topic><topic>Propionic acid</topic><topic>Reproducibility</topic><topic>Risk factors</topic><topic>Stool pattern</topic><topic>Tumorigenic bacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Daiki</creatorcontrib><creatorcontrib>Murakami, Haruka</creatorcontrib><creatorcontrib>Ohno, Harumi</creatorcontrib><creatorcontrib>Tanisawa, Kumpei</creatorcontrib><creatorcontrib>Konishi, Kana</creatorcontrib><creatorcontrib>Todoroki-Mori, Kikue</creatorcontrib><creatorcontrib>Tsunematsu, Yuta</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Ogata, Yuji</creatorcontrib><creatorcontrib>Miyoshi, Noriyuki</creatorcontrib><creatorcontrib>Kubota, Naoto</creatorcontrib><creatorcontrib>Kunisawa, Jun</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><creatorcontrib>Kubota, Tetsuya</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Miyachi, Motohiko</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Daiki</au><au>Murakami, Haruka</au><au>Ohno, Harumi</au><au>Tanisawa, Kumpei</au><au>Konishi, Kana</au><au>Todoroki-Mori, Kikue</au><au>Tsunematsu, Yuta</au><au>Sato, Michio</au><au>Ogata, Yuji</au><au>Miyoshi, Noriyuki</au><au>Kubota, Naoto</au><au>Kunisawa, Jun</au><au>Wakabayashi, Keiji</au><au>Kubota, Tetsuya</au><au>Watanabe, Kenji</au><au>Miyachi, Motohiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults</atitle><jtitle>BMC microbiology</jtitle><date>2021-06-28</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>196</epage><pages>1-196</pages><artnum>196</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>Colibactin-producing Escherichia coli containing polyketide synthase (pks.sup.+E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks.sup.+E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks.sup.+E. coli was determined by using specific primers for pks.sup.+E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks.sup.+E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks.sup.+E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and [alpha]-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34182940</pmid><doi>10.1186/s12866-021-02255-6</doi><orcidid>https://orcid.org/0000-0002-1146-0905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2180
ispartof BMC microbiology, 2021-06, Vol.21 (1), p.1-196, Article 196
issn 1471-2180
1471-2180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e48af1e61964c5a82e87ff540246cd1
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adults
Animal models
Bacteria
Cancer
Cell cycle
Color
Colorectal cancer
Colorectal carcinoma
Confidence intervals
Cross-sectional studies
Cross-sectional study
Diagnosis
E coli
Escherichia coli infections
Factorial analysis
Fatty acid
Fatty acids
Feces
Gas chromatography
Gastroenteritis
Health aspects
Intestinal microflora
Linoleic acid
Mass spectrometry
Mass spectroscopy
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Odor
Odors
Plasma
Polyketide synthase
Propionic acid
Reproducibility
Risk factors
Stool pattern
Tumorigenic bacteria
title Stool pattern is associated with not only the prevalence of tumorigenic bacteria isolated from fecal matter but also plasma and fecal fatty acids in healthy Japanese adults
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stool%20pattern%20is%20associated%20with%20not%20only%20the%20prevalence%20of%20tumorigenic%20bacteria%20isolated%20from%20fecal%20matter%20but%20also%20plasma%20and%20fecal%20fatty%20acids%20in%20healthy%20Japanese%20adults&rft.jtitle=BMC%20microbiology&rft.au=Watanabe,%20Daiki&rft.date=2021-06-28&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=196&rft.pages=1-196&rft.artnum=196&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-021-02255-6&rft_dat=%3Cgale_doaj_%3EA666719834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-692ba31b877f73afc88cc643179c49d76d7adae76416a6ea25196b73395761403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552813027&rft_id=info:pmid/34182940&rft_galeid=A666719834&rfr_iscdi=true