Loading…

PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R

The PoweR package aims to help obtain or verify empirical power studies for goodnessof-fit tests for independent and identically distributed data. The current version of our package is only valid for simple null hypotheses or for pivotal test statistics for which the set of critical values does not...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical software 2016-02, Vol.69 (3), p.1-44
Main Authors: Lafaye de Micheaux, Pierre, Tran, Viet Anh
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-3380884e81da2c5da25a4a2c8dc0a510936266a59f54468e6916094d85a4a9fb3
cites
container_end_page 44
container_issue 3
container_start_page 1
container_title Journal of statistical software
container_volume 69
creator Lafaye de Micheaux, Pierre
Tran, Viet Anh
description The PoweR package aims to help obtain or verify empirical power studies for goodnessof-fit tests for independent and identically distributed data. The current version of our package is only valid for simple null hypotheses or for pivotal test statistics for which the set of critical values does not depend on a particular choice of a null distribution (and on nuisance parameters) under the non-simple null case. We also assume that the distribution of the test statistic is continuous. As a reproducible research computational tool it can be viewed as helping to simply reproducing (or detecting errors in) simulation results already published in the literature. Using our package helps also in designing new simulation studies. The empirical levels and powers for many statistical test statistics under a wide variety of alternative distributions can be obtained quickly and accurately using a C/C++ and R environment. The parallel package can be used to parallelize computations when a multicore processor is available. The results can be displayed using LATEX tables or specialized graphs, which can be directly incorporated into a report. This article gives an overview of the main design aims and principles of our package, as well as strategies for adaptation and extension. Hands-on illustrations are presented to help new users in getting started.
doi_str_mv 10.18637/jss.v069.i03
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e580aa9bc114b748946a7cc1be6473a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e580aa9bc114b748946a7cc1be6473a</doaj_id><sourcerecordid>oai_doaj_org_article_2e580aa9bc114b748946a7cc1be6473a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-3380884e81da2c5da25a4a2c8dc0a510936266a59f54468e6916094d85a4a9fb3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYgevfcPLLbbj229EYJIgtEAnpvZbldLFkraovHfu4gxXmbemcw8hwehW0pGVElW3W1SGn0QqUeesDM0oIKropKSnP_Ll-gqpQ0hJeFaDND-JXy6Jb7HY7x0-xiag_V15_ohOYj2Ha9D6HAOeArJ4aewyw5PIHYBHx8jXvntoYPsww6v8qHxLuE2RDwLodm5lIrQFq3PeO1STtjv8PIaXbTQJXfz24fo9WG6njwWi-fZfDJeFJYRlgvGFFGKO0UbKK3oiwDeJ9VYAoISzWQpJQjdCs6lclJTSTRv1PFMtzUbovmJ2wTYmH30W4hfJoA3P4sQ3wzE7G3nTOmEIgC6tpTyuuJKcwmVtbR2klcMelZxYtkYUoqu_eNRYn7Um169Oao3vXr2DbAOdyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Lafaye de Micheaux, Pierre ; Tran, Viet Anh</creator><creatorcontrib>Lafaye de Micheaux, Pierre ; Tran, Viet Anh</creatorcontrib><description>The PoweR package aims to help obtain or verify empirical power studies for goodnessof-fit tests for independent and identically distributed data. The current version of our package is only valid for simple null hypotheses or for pivotal test statistics for which the set of critical values does not depend on a particular choice of a null distribution (and on nuisance parameters) under the non-simple null case. We also assume that the distribution of the test statistic is continuous. As a reproducible research computational tool it can be viewed as helping to simply reproducing (or detecting errors in) simulation results already published in the literature. Using our package helps also in designing new simulation studies. The empirical levels and powers for many statistical test statistics under a wide variety of alternative distributions can be obtained quickly and accurately using a C/C++ and R environment. The parallel package can be used to parallelize computations when a multicore processor is available. The results can be displayed using LATEX tables or specialized graphs, which can be directly incorporated into a report. This article gives an overview of the main design aims and principles of our package, as well as strategies for adaptation and extension. Hands-on illustrations are presented to help new users in getting started.</description><identifier>ISSN: 1548-7660</identifier><identifier>EISSN: 1548-7660</identifier><identifier>DOI: 10.18637/jss.v069.i03</identifier><language>eng</language><publisher>Foundation for Open Access Statistics</publisher><subject>goodness-of-fit test ; Monte Carlo ; power study ; reproducible research</subject><ispartof>Journal of statistical software, 2016-02, Vol.69 (3), p.1-44</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-3380884e81da2c5da25a4a2c8dc0a510936266a59f54468e6916094d85a4a9fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Lafaye de Micheaux, Pierre</creatorcontrib><creatorcontrib>Tran, Viet Anh</creatorcontrib><title>PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R</title><title>Journal of statistical software</title><description>The PoweR package aims to help obtain or verify empirical power studies for goodnessof-fit tests for independent and identically distributed data. The current version of our package is only valid for simple null hypotheses or for pivotal test statistics for which the set of critical values does not depend on a particular choice of a null distribution (and on nuisance parameters) under the non-simple null case. We also assume that the distribution of the test statistic is continuous. As a reproducible research computational tool it can be viewed as helping to simply reproducing (or detecting errors in) simulation results already published in the literature. Using our package helps also in designing new simulation studies. The empirical levels and powers for many statistical test statistics under a wide variety of alternative distributions can be obtained quickly and accurately using a C/C++ and R environment. The parallel package can be used to parallelize computations when a multicore processor is available. The results can be displayed using LATEX tables or specialized graphs, which can be directly incorporated into a report. This article gives an overview of the main design aims and principles of our package, as well as strategies for adaptation and extension. Hands-on illustrations are presented to help new users in getting started.</description><subject>goodness-of-fit test</subject><subject>Monte Carlo</subject><subject>power study</subject><subject>reproducible research</subject><issn>1548-7660</issn><issn>1548-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1PAjEQhhujiYgevfcPLLbbj229EYJIgtEAnpvZbldLFkraovHfu4gxXmbemcw8hwehW0pGVElW3W1SGn0QqUeesDM0oIKropKSnP_Ll-gqpQ0hJeFaDND-JXy6Jb7HY7x0-xiag_V15_ohOYj2Ha9D6HAOeArJ4aewyw5PIHYBHx8jXvntoYPsww6v8qHxLuE2RDwLodm5lIrQFq3PeO1STtjv8PIaXbTQJXfz24fo9WG6njwWi-fZfDJeFJYRlgvGFFGKO0UbKK3oiwDeJ9VYAoISzWQpJQjdCs6lclJTSTRv1PFMtzUbovmJ2wTYmH30W4hfJoA3P4sQ3wzE7G3nTOmEIgC6tpTyuuJKcwmVtbR2klcMelZxYtkYUoqu_eNRYn7Um169Oao3vXr2DbAOdyQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Lafaye de Micheaux, Pierre</creator><creator>Tran, Viet Anh</creator><general>Foundation for Open Access Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20160201</creationdate><title>PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R</title><author>Lafaye de Micheaux, Pierre ; Tran, Viet Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-3380884e81da2c5da25a4a2c8dc0a510936266a59f54468e6916094d85a4a9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>goodness-of-fit test</topic><topic>Monte Carlo</topic><topic>power study</topic><topic>reproducible research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lafaye de Micheaux, Pierre</creatorcontrib><creatorcontrib>Tran, Viet Anh</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Journal of statistical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lafaye de Micheaux, Pierre</au><au>Tran, Viet Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R</atitle><jtitle>Journal of statistical software</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>69</volume><issue>3</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><issn>1548-7660</issn><eissn>1548-7660</eissn><abstract>The PoweR package aims to help obtain or verify empirical power studies for goodnessof-fit tests for independent and identically distributed data. The current version of our package is only valid for simple null hypotheses or for pivotal test statistics for which the set of critical values does not depend on a particular choice of a null distribution (and on nuisance parameters) under the non-simple null case. We also assume that the distribution of the test statistic is continuous. As a reproducible research computational tool it can be viewed as helping to simply reproducing (or detecting errors in) simulation results already published in the literature. Using our package helps also in designing new simulation studies. The empirical levels and powers for many statistical test statistics under a wide variety of alternative distributions can be obtained quickly and accurately using a C/C++ and R environment. The parallel package can be used to parallelize computations when a multicore processor is available. The results can be displayed using LATEX tables or specialized graphs, which can be directly incorporated into a report. This article gives an overview of the main design aims and principles of our package, as well as strategies for adaptation and extension. Hands-on illustrations are presented to help new users in getting started.</abstract><pub>Foundation for Open Access Statistics</pub><doi>10.18637/jss.v069.i03</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7660
ispartof Journal of statistical software, 2016-02, Vol.69 (3), p.1-44
issn 1548-7660
1548-7660
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e580aa9bc114b748946a7cc1be6473a
source Open Access: DOAJ - Directory of Open Access Journals
subjects goodness-of-fit test
Monte Carlo
power study
reproducible research
title PoweR : A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PoweR%20:%20A%20Reproducible%20Research%20Tool%20to%20Ease%20Monte%20Carlo%20Power%20Simulation%20Studies%20for%20Goodness-of-fit%20Tests%20in%20R&rft.jtitle=Journal%20of%20statistical%20software&rft.au=Lafaye%20de%20Micheaux,%20Pierre&rft.date=2016-02-01&rft.volume=69&rft.issue=3&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.issn=1548-7660&rft.eissn=1548-7660&rft_id=info:doi/10.18637/jss.v069.i03&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2e580aa9bc114b748946a7cc1be6473a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-3380884e81da2c5da25a4a2c8dc0a510936266a59f54468e6916094d85a4a9fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true