Loading…
A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling
In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on mini...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-02, Vol.20 (4), p.1096 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73 |
container_end_page | |
container_issue | 4 |
container_start_page | 1096 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Hu, Qiong Cai, Miao Mohabbati-Kalejahi, Nasrin Mehdizadeh, Amir Alamdar Yazdi, Mohammad Ali Vinel, Alexander Rigdon, Steven E Davis, Karen C Megahed, Fadel M |
description | In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the
shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research. |
doi_str_mv | 10.3390/s20041096 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734</doaj_id><sourcerecordid>2365218765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EoqVw4AsgH-GwxR47dsIBaVX-VSqiKuWGZE2c8eIqG6d2dtF-ewJbVu1pRvOefvOkx9hLKU6VasTbAkJoKRrziB1LDXpRA4jH9_Yj9qyUGyFAKVU_ZUcKhG2UNsfs55Jf0TbSb54C_4AT8uWA_W6Kni_HsY8ep5iGwuPArxJ2_DpjCLP4HQNNu1N-iXni8I5fZio-x3GKW-JfU0d9HFbP2ZOAfaEXd_OE_fj08frsy-Li2-fzs-XFwmstp0XdmDZI3WlSnVQQjOgCem3QGxmMb0wHvtXSNoC2Juk1gvXQqho0yQqtOmHne26X8MaNOa4x71zC6P4dUl65OWb0PTmgypMhqC0JjZVoDaGsSRG0XlmlZ9b7PWvctGvqPA1Txv4B9KEyxF9ulbbOCiuMVTPg9R0gp9sNlcmtY_HU9zhQ2hQHylQga2uq2fpmb_U5lZIpHN5I4f426w7Nzt5X93MdnP-rVH8AcCediA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365218765</pqid></control><display><type>article</type><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</creator><creatorcontrib>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</creatorcontrib><description>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the
shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20041096</identifier><identifier>PMID: 32079346</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>crash risk modeling ; hazardous materials ; highway safety ; operations research ; prescriptive analytics ; Review ; shortest path problem ; trucking ; vehicle routing problem</subject><ispartof>Sensors (Basel, Switzerland), 2020-02, Vol.20 (4), p.1096</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</citedby><cites>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</cites><orcidid>0000-0003-0170-6905 ; 0000-0003-2194-5110 ; 0000-0003-3095-5986 ; 0000-0003-4438-1012 ; 0000-0001-7490-9928 ; 0000-0003-2327-4429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32079346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Qiong</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>Mohabbati-Kalejahi, Nasrin</creatorcontrib><creatorcontrib>Mehdizadeh, Amir</creatorcontrib><creatorcontrib>Alamdar Yazdi, Mohammad Ali</creatorcontrib><creatorcontrib>Vinel, Alexander</creatorcontrib><creatorcontrib>Rigdon, Steven E</creatorcontrib><creatorcontrib>Davis, Karen C</creatorcontrib><creatorcontrib>Megahed, Fadel M</creatorcontrib><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the
shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</description><subject>crash risk modeling</subject><subject>hazardous materials</subject><subject>highway safety</subject><subject>operations research</subject><subject>prescriptive analytics</subject><subject>Review</subject><subject>shortest path problem</subject><subject>trucking</subject><subject>vehicle routing problem</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9v1DAQxS0EoqVw4AsgH-GwxR47dsIBaVX-VSqiKuWGZE2c8eIqG6d2dtF-ewJbVu1pRvOefvOkx9hLKU6VasTbAkJoKRrziB1LDXpRA4jH9_Yj9qyUGyFAKVU_ZUcKhG2UNsfs55Jf0TbSb54C_4AT8uWA_W6Kni_HsY8ep5iGwuPArxJ2_DpjCLP4HQNNu1N-iXni8I5fZio-x3GKW-JfU0d9HFbP2ZOAfaEXd_OE_fj08frsy-Li2-fzs-XFwmstp0XdmDZI3WlSnVQQjOgCem3QGxmMb0wHvtXSNoC2Juk1gvXQqho0yQqtOmHne26X8MaNOa4x71zC6P4dUl65OWb0PTmgypMhqC0JjZVoDaGsSRG0XlmlZ9b7PWvctGvqPA1Txv4B9KEyxF9ulbbOCiuMVTPg9R0gp9sNlcmtY_HU9zhQ2hQHylQga2uq2fpmb_U5lZIpHN5I4f426w7Nzt5X93MdnP-rVH8AcCediA</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Hu, Qiong</creator><creator>Cai, Miao</creator><creator>Mohabbati-Kalejahi, Nasrin</creator><creator>Mehdizadeh, Amir</creator><creator>Alamdar Yazdi, Mohammad Ali</creator><creator>Vinel, Alexander</creator><creator>Rigdon, Steven E</creator><creator>Davis, Karen C</creator><creator>Megahed, Fadel M</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0170-6905</orcidid><orcidid>https://orcid.org/0000-0003-2194-5110</orcidid><orcidid>https://orcid.org/0000-0003-3095-5986</orcidid><orcidid>https://orcid.org/0000-0003-4438-1012</orcidid><orcidid>https://orcid.org/0000-0001-7490-9928</orcidid><orcidid>https://orcid.org/0000-0003-2327-4429</orcidid></search><sort><creationdate>20200217</creationdate><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><author>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crash risk modeling</topic><topic>hazardous materials</topic><topic>highway safety</topic><topic>operations research</topic><topic>prescriptive analytics</topic><topic>Review</topic><topic>shortest path problem</topic><topic>trucking</topic><topic>vehicle routing problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qiong</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>Mohabbati-Kalejahi, Nasrin</creatorcontrib><creatorcontrib>Mehdizadeh, Amir</creatorcontrib><creatorcontrib>Alamdar Yazdi, Mohammad Ali</creatorcontrib><creatorcontrib>Vinel, Alexander</creatorcontrib><creatorcontrib>Rigdon, Steven E</creatorcontrib><creatorcontrib>Davis, Karen C</creatorcontrib><creatorcontrib>Megahed, Fadel M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qiong</au><au>Cai, Miao</au><au>Mohabbati-Kalejahi, Nasrin</au><au>Mehdizadeh, Amir</au><au>Alamdar Yazdi, Mohammad Ali</au><au>Vinel, Alexander</au><au>Rigdon, Steven E</au><au>Davis, Karen C</au><au>Megahed, Fadel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>1096</spage><pages>1096-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the
shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32079346</pmid><doi>10.3390/s20041096</doi><orcidid>https://orcid.org/0000-0003-0170-6905</orcidid><orcidid>https://orcid.org/0000-0003-2194-5110</orcidid><orcidid>https://orcid.org/0000-0003-3095-5986</orcidid><orcidid>https://orcid.org/0000-0003-4438-1012</orcidid><orcidid>https://orcid.org/0000-0001-7490-9928</orcidid><orcidid>https://orcid.org/0000-0003-2327-4429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-02, Vol.20 (4), p.1096 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | crash risk modeling hazardous materials highway safety operations research prescriptive analytics Review shortest path problem trucking vehicle routing problem |
title | A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Data%20Analytic%20Applications%20in%20Road%20Traffic%20Safety.%20Part%202:%20Prescriptive%20Modeling&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Hu,%20Qiong&rft.date=2020-02-17&rft.volume=20&rft.issue=4&rft.spage=1096&rft.pages=1096-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20041096&rft_dat=%3Cproquest_doaj_%3E2365218765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365218765&rft_id=info:pmid/32079346&rfr_iscdi=true |