Loading…

A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling

In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on mini...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-02, Vol.20 (4), p.1096
Main Authors: Hu, Qiong, Cai, Miao, Mohabbati-Kalejahi, Nasrin, Mehdizadeh, Amir, Alamdar Yazdi, Mohammad Ali, Vinel, Alexander, Rigdon, Steven E, Davis, Karen C, Megahed, Fadel M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73
cites cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73
container_end_page
container_issue 4
container_start_page 1096
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Hu, Qiong
Cai, Miao
Mohabbati-Kalejahi, Nasrin
Mehdizadeh, Amir
Alamdar Yazdi, Mohammad Ali
Vinel, Alexander
Rigdon, Steven E
Davis, Karen C
Megahed, Fadel M
description In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.
doi_str_mv 10.3390/s20041096
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734</doaj_id><sourcerecordid>2365218765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EoqVw4AsgH-GwxR47dsIBaVX-VSqiKuWGZE2c8eIqG6d2dtF-ewJbVu1pRvOefvOkx9hLKU6VasTbAkJoKRrziB1LDXpRA4jH9_Yj9qyUGyFAKVU_ZUcKhG2UNsfs55Jf0TbSb54C_4AT8uWA_W6Kni_HsY8ep5iGwuPArxJ2_DpjCLP4HQNNu1N-iXni8I5fZio-x3GKW-JfU0d9HFbP2ZOAfaEXd_OE_fj08frsy-Li2-fzs-XFwmstp0XdmDZI3WlSnVQQjOgCem3QGxmMb0wHvtXSNoC2Juk1gvXQqho0yQqtOmHne26X8MaNOa4x71zC6P4dUl65OWb0PTmgypMhqC0JjZVoDaGsSRG0XlmlZ9b7PWvctGvqPA1Txv4B9KEyxF9ulbbOCiuMVTPg9R0gp9sNlcmtY_HU9zhQ2hQHylQga2uq2fpmb_U5lZIpHN5I4f426w7Nzt5X93MdnP-rVH8AcCediA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365218765</pqid></control><display><type>article</type><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</creator><creatorcontrib>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</creatorcontrib><description>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20041096</identifier><identifier>PMID: 32079346</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>crash risk modeling ; hazardous materials ; highway safety ; operations research ; prescriptive analytics ; Review ; shortest path problem ; trucking ; vehicle routing problem</subject><ispartof>Sensors (Basel, Switzerland), 2020-02, Vol.20 (4), p.1096</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</citedby><cites>FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</cites><orcidid>0000-0003-0170-6905 ; 0000-0003-2194-5110 ; 0000-0003-3095-5986 ; 0000-0003-4438-1012 ; 0000-0001-7490-9928 ; 0000-0003-2327-4429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32079346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Qiong</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>Mohabbati-Kalejahi, Nasrin</creatorcontrib><creatorcontrib>Mehdizadeh, Amir</creatorcontrib><creatorcontrib>Alamdar Yazdi, Mohammad Ali</creatorcontrib><creatorcontrib>Vinel, Alexander</creatorcontrib><creatorcontrib>Rigdon, Steven E</creatorcontrib><creatorcontrib>Davis, Karen C</creatorcontrib><creatorcontrib>Megahed, Fadel M</creatorcontrib><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</description><subject>crash risk modeling</subject><subject>hazardous materials</subject><subject>highway safety</subject><subject>operations research</subject><subject>prescriptive analytics</subject><subject>Review</subject><subject>shortest path problem</subject><subject>trucking</subject><subject>vehicle routing problem</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9v1DAQxS0EoqVw4AsgH-GwxR47dsIBaVX-VSqiKuWGZE2c8eIqG6d2dtF-ewJbVu1pRvOefvOkx9hLKU6VasTbAkJoKRrziB1LDXpRA4jH9_Yj9qyUGyFAKVU_ZUcKhG2UNsfs55Jf0TbSb54C_4AT8uWA_W6Kni_HsY8ep5iGwuPArxJ2_DpjCLP4HQNNu1N-iXni8I5fZio-x3GKW-JfU0d9HFbP2ZOAfaEXd_OE_fj08frsy-Li2-fzs-XFwmstp0XdmDZI3WlSnVQQjOgCem3QGxmMb0wHvtXSNoC2Juk1gvXQqho0yQqtOmHne26X8MaNOa4x71zC6P4dUl65OWb0PTmgypMhqC0JjZVoDaGsSRG0XlmlZ9b7PWvctGvqPA1Txv4B9KEyxF9ulbbOCiuMVTPg9R0gp9sNlcmtY_HU9zhQ2hQHylQga2uq2fpmb_U5lZIpHN5I4f426w7Nzt5X93MdnP-rVH8AcCediA</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Hu, Qiong</creator><creator>Cai, Miao</creator><creator>Mohabbati-Kalejahi, Nasrin</creator><creator>Mehdizadeh, Amir</creator><creator>Alamdar Yazdi, Mohammad Ali</creator><creator>Vinel, Alexander</creator><creator>Rigdon, Steven E</creator><creator>Davis, Karen C</creator><creator>Megahed, Fadel M</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0170-6905</orcidid><orcidid>https://orcid.org/0000-0003-2194-5110</orcidid><orcidid>https://orcid.org/0000-0003-3095-5986</orcidid><orcidid>https://orcid.org/0000-0003-4438-1012</orcidid><orcidid>https://orcid.org/0000-0001-7490-9928</orcidid><orcidid>https://orcid.org/0000-0003-2327-4429</orcidid></search><sort><creationdate>20200217</creationdate><title>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</title><author>Hu, Qiong ; Cai, Miao ; Mohabbati-Kalejahi, Nasrin ; Mehdizadeh, Amir ; Alamdar Yazdi, Mohammad Ali ; Vinel, Alexander ; Rigdon, Steven E ; Davis, Karen C ; Megahed, Fadel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crash risk modeling</topic><topic>hazardous materials</topic><topic>highway safety</topic><topic>operations research</topic><topic>prescriptive analytics</topic><topic>Review</topic><topic>shortest path problem</topic><topic>trucking</topic><topic>vehicle routing problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qiong</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>Mohabbati-Kalejahi, Nasrin</creatorcontrib><creatorcontrib>Mehdizadeh, Amir</creatorcontrib><creatorcontrib>Alamdar Yazdi, Mohammad Ali</creatorcontrib><creatorcontrib>Vinel, Alexander</creatorcontrib><creatorcontrib>Rigdon, Steven E</creatorcontrib><creatorcontrib>Davis, Karen C</creatorcontrib><creatorcontrib>Megahed, Fadel M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qiong</au><au>Cai, Miao</au><au>Mohabbati-Kalejahi, Nasrin</au><au>Mehdizadeh, Amir</au><au>Alamdar Yazdi, Mohammad Ali</au><au>Vinel, Alexander</au><au>Rigdon, Steven E</au><au>Davis, Karen C</au><au>Megahed, Fadel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>1096</spage><pages>1096-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32079346</pmid><doi>10.3390/s20041096</doi><orcidid>https://orcid.org/0000-0003-0170-6905</orcidid><orcidid>https://orcid.org/0000-0003-2194-5110</orcidid><orcidid>https://orcid.org/0000-0003-3095-5986</orcidid><orcidid>https://orcid.org/0000-0003-4438-1012</orcidid><orcidid>https://orcid.org/0000-0001-7490-9928</orcidid><orcidid>https://orcid.org/0000-0003-2327-4429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-02, Vol.20 (4), p.1096
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e5ce6e287e04a50b6ea18e3e2bc3734
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects crash risk modeling
hazardous materials
highway safety
operations research
prescriptive analytics
Review
shortest path problem
trucking
vehicle routing problem
title A Review of Data Analytic Applications in Road Traffic Safety. Part 2: Prescriptive Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Data%20Analytic%20Applications%20in%20Road%20Traffic%20Safety.%20Part%202:%20Prescriptive%20Modeling&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Hu,%20Qiong&rft.date=2020-02-17&rft.volume=20&rft.issue=4&rft.spage=1096&rft.pages=1096-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20041096&rft_dat=%3Cproquest_doaj_%3E2365218765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-896bf14d4e3d132f60dfac46ac61f6c96d2cb41792a78e1c4a27c2b3824e15a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365218765&rft_id=info:pmid/32079346&rfr_iscdi=true