Loading…
Identifying Chemical Differences in Cheddar Cheese Based on Maturity Level and Manufacturer Using Vibrational Spectroscopy and Chemometrics
Cheese is a nutritious dairy product and a valuable commodity. Internationally, cheddar cheese is produced and consumed in large quantities, and it is the main cheese variety that is exported from Australia. Despite its importance, the analytical methods to that are used to determine cheese quality...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (24), p.8051 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cheese is a nutritious dairy product and a valuable commodity. Internationally, cheddar cheese is produced and consumed in large quantities, and it is the main cheese variety that is exported from Australia. Despite its importance, the analytical methods to that are used to determine cheese quality rely on traditional approaches that require time, are invasive, and which involve potentially hazardous chemicals. In contrast, spectroscopic techniques can rapidly provide molecular information and are non-destructive, fast, and chemical-free methods. Combined with partner recognition methods (chemometrics), they can identify small changes in the composition or condition of cheeses. In this work, we combined FTIR and Raman spectroscopies with principal component analysis (PCA) to investigate the effects of aging in commercial cheddar cheeses. Changes in the amide I and II bands were the main spectral characteristics responsible for classifying commercial cheddar cheeses based on the ripening time and manufacturer using FTIR, and bands from lipids, including β'-polymorph of fat crystals, were more clearly determined through changes in the Raman spectra. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28248051 |