Loading…

PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes

Saccharomyces cerevisiae encodes two Pif1 family DNA helicases, Pif1 and Rrm3. Rrm3 promotes DNA replication past stable protein complexes at tRNA genes (tDNAs). We identify a new role for the Pif1 helicase: promotion of replication and suppression of DNA damage at tDNAs. Pif1 binds multiple tDNAs,...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-04, Vol.8 (1), p.15025-15025, Article 15025
Main Authors: Tran, Phong Lan Thao, Pohl, Thomas J., Chen, Chi-Fu, Chan, Angela, Pott, Sebastian, Zakian, Virginia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Saccharomyces cerevisiae encodes two Pif1 family DNA helicases, Pif1 and Rrm3. Rrm3 promotes DNA replication past stable protein complexes at tRNA genes (tDNAs). We identify a new role for the Pif1 helicase: promotion of replication and suppression of DNA damage at tDNAs. Pif1 binds multiple tDNAs, and this binding is higher in rrm3 Δ cells. Accumulation of replication intermediates and DNA damage at tDNAs is higher in pif1 Δ rrm3 Δ than in rrm3 Δ cells. DNA damage at tDNAs in the absence of these helicases is suppressed by destabilizing R-loops while Pif1 and Rrm3 binding to tDNAs is increased upon R-loop stabilization. We propose that Rrm3 and Pif1 promote genome stability at tDNAs by displacing the stable multi-protein transcription complex and by removing R-loops. Thus, we identify tDNAs as a new source of R-loop-mediated DNA damage. Given their large number and high transcription rate, tDNAs may be a potent source of genome instability. The budding yeast genome encodes two Pif1 family helicases, Pif1 and Rrm3, previously shown to have distinct functions in the maintenance of telomeres and other aspects of genome stability. Here the authors identify a role for Pif1 (and Rrm3) in promoting DNA replication and suppressing R-loop mediated DNA damage at tRNA genes.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15025