Loading…

Observation of dynamic non-Hermitian skin effects

Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, wherea...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-08, Vol.15 (1), p.6544-9, Article 6544
Main Authors: Li, Zhen, Wang, Li-Wei, Wang, Xulong, Lin, Zhi-Kang, Ma, Guancong, Jiang, Jian-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-cb7cf04be9af9db0146e85a4972ec9c3a473e569092a2f4fb548225d7dba43e33
container_end_page 9
container_issue 1
container_start_page 6544
container_title Nature communications
container_volume 15
creator Li, Zhen
Wang, Li-Wei
Wang, Xulong
Lin, Zhi-Kang
Ma, Guancong
Jiang, Jian-Hua
description Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter. Characterizing and classifying dynamic non-Hermitian skin effect is a key challenge in nonHermitian physics. Here, authors illustrated rich non-Hermitian skin dynamics and dynamic phases in one-dimensional systems with glide-time reversal symmetry.
doi_str_mv 10.1038/s41467-024-50776-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e8e54ee65e84f71857dfa9cf5ba314e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2e8e54ee65e84f71857dfa9cf5ba314e</doaj_id><sourcerecordid>3087563311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-cb7cf04be9af9db0146e85a4972ec9c3a473e569092a2f4fb548225d7dba43e33</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2ObaP-DCTOLGzVQ-DgOzMqZR26RJN7omDHO4cp2BCnOb9N9L77S1dSEbCOfh4cBLyFtGTxkV-mMBBp1qKYdWUqW6lr0gx5wCa5ni4uWT9RE5KWVH6xA90wCvyZHoaS-F0MeEXQ0F841dQopN8s14G-0cXBNTbM8xz2EJNjblV4gNeo9uKW_IK2-ngif384b8-Prl-9l5e3n17eLs82XrgPOldYNynsKAvfX9ONDaLWppoVccXe-EBSVQdrURbrkHP0jQnMtRjYMFgUJsyMXqHZPdmescZptvTbLBHDZS3hqbl-AmNBw1SkDsJGrwimmpRm975-VgBQOsrk-r63o_zDg6jEu20zPp80oMP8023RjGeK9obXVDPtwbcvq9x7KYORSH02Qjpn0xgmolOyEYq-j7f9Bd2udY_-pAAWjoeKX4SrmcSsnoH7th1NwlbNaETU3YHBI2d-p3T9_xeOQhzwqIFSi1FLeY_979H-0fqqCwdQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087448462</pqid></control><display><type>article</type><title>Observation of dynamic non-Hermitian skin effects</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Zhen ; Wang, Li-Wei ; Wang, Xulong ; Lin, Zhi-Kang ; Ma, Guancong ; Jiang, Jian-Hua</creator><creatorcontrib>Li, Zhen ; Wang, Li-Wei ; Wang, Xulong ; Lin, Zhi-Kang ; Ma, Guancong ; Jiang, Jian-Hua</creatorcontrib><description>Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter. Characterizing and classifying dynamic non-Hermitian skin effect is a key challenge in nonHermitian physics. Here, authors illustrated rich non-Hermitian skin dynamics and dynamic phases in one-dimensional systems with glide-time reversal symmetry.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-50776-1</identifier><identifier>PMID: 39095338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/1015 ; 639/766/25/3927 ; Brillouin zones ; Controllability ; Dynamic characteristics ; Eigenvectors ; Humanities and Social Sciences ; Inertia ; Mechanical properties ; Mechanical systems ; multidisciplinary ; Phase transitions ; Phases ; Physics ; Propagation ; Robust control ; Science ; Science (multidisciplinary) ; Skin ; Skin effect ; Symmetry ; Topology ; Wave propagation</subject><ispartof>Nature communications, 2024-08, Vol.15 (1), p.6544-9, Article 6544</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-cb7cf04be9af9db0146e85a4972ec9c3a473e569092a2f4fb548225d7dba43e33</cites><orcidid>0000-0003-3652-4351 ; 0000-0001-8371-0339 ; 0000-0001-6505-0998 ; 0000-0002-9153-3181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3087448462/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3087448462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39095338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wang, Li-Wei</creatorcontrib><creatorcontrib>Wang, Xulong</creatorcontrib><creatorcontrib>Lin, Zhi-Kang</creatorcontrib><creatorcontrib>Ma, Guancong</creatorcontrib><creatorcontrib>Jiang, Jian-Hua</creatorcontrib><title>Observation of dynamic non-Hermitian skin effects</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter. Characterizing and classifying dynamic non-Hermitian skin effect is a key challenge in nonHermitian physics. Here, authors illustrated rich non-Hermitian skin dynamics and dynamic phases in one-dimensional systems with glide-time reversal symmetry.</description><subject>639/301/1019/1015</subject><subject>639/766/25/3927</subject><subject>Brillouin zones</subject><subject>Controllability</subject><subject>Dynamic characteristics</subject><subject>Eigenvectors</subject><subject>Humanities and Social Sciences</subject><subject>Inertia</subject><subject>Mechanical properties</subject><subject>Mechanical systems</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Physics</subject><subject>Propagation</subject><subject>Robust control</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Skin effect</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Wave propagation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vFSEUhonR2ObaP-DCTOLGzVQ-DgOzMqZR26RJN7omDHO4cp2BCnOb9N9L77S1dSEbCOfh4cBLyFtGTxkV-mMBBp1qKYdWUqW6lr0gx5wCa5ni4uWT9RE5KWVH6xA90wCvyZHoaS-F0MeEXQ0F841dQopN8s14G-0cXBNTbM8xz2EJNjblV4gNeo9uKW_IK2-ngif384b8-Prl-9l5e3n17eLs82XrgPOldYNynsKAvfX9ONDaLWppoVccXe-EBSVQdrURbrkHP0jQnMtRjYMFgUJsyMXqHZPdmescZptvTbLBHDZS3hqbl-AmNBw1SkDsJGrwimmpRm975-VgBQOsrk-r63o_zDg6jEu20zPp80oMP8023RjGeK9obXVDPtwbcvq9x7KYORSH02Qjpn0xgmolOyEYq-j7f9Bd2udY_-pAAWjoeKX4SrmcSsnoH7th1NwlbNaETU3YHBI2d-p3T9_xeOQhzwqIFSi1FLeY_979H-0fqqCwdQ</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Li, Zhen</creator><creator>Wang, Li-Wei</creator><creator>Wang, Xulong</creator><creator>Lin, Zhi-Kang</creator><creator>Ma, Guancong</creator><creator>Jiang, Jian-Hua</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3652-4351</orcidid><orcidid>https://orcid.org/0000-0001-8371-0339</orcidid><orcidid>https://orcid.org/0000-0001-6505-0998</orcidid><orcidid>https://orcid.org/0000-0002-9153-3181</orcidid></search><sort><creationdate>20240802</creationdate><title>Observation of dynamic non-Hermitian skin effects</title><author>Li, Zhen ; Wang, Li-Wei ; Wang, Xulong ; Lin, Zhi-Kang ; Ma, Guancong ; Jiang, Jian-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-cb7cf04be9af9db0146e85a4972ec9c3a473e569092a2f4fb548225d7dba43e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/1019/1015</topic><topic>639/766/25/3927</topic><topic>Brillouin zones</topic><topic>Controllability</topic><topic>Dynamic characteristics</topic><topic>Eigenvectors</topic><topic>Humanities and Social Sciences</topic><topic>Inertia</topic><topic>Mechanical properties</topic><topic>Mechanical systems</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Physics</topic><topic>Propagation</topic><topic>Robust control</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Skin effect</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wang, Li-Wei</creatorcontrib><creatorcontrib>Wang, Xulong</creatorcontrib><creatorcontrib>Lin, Zhi-Kang</creatorcontrib><creatorcontrib>Ma, Guancong</creatorcontrib><creatorcontrib>Jiang, Jian-Hua</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhen</au><au>Wang, Li-Wei</au><au>Wang, Xulong</au><au>Lin, Zhi-Kang</au><au>Ma, Guancong</au><au>Jiang, Jian-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of dynamic non-Hermitian skin effects</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-08-02</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6544</spage><epage>9</epage><pages>6544-9</pages><artnum>6544</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Non-Hermitian physics has emerged as a new paradigm that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points, spectral topology, and non-Hermitian skin effects (NHSEs). Most existing studies focus on non-Hermitian eigenstates, whereas dynamic properties have been discussed only recently, and the dynamic NHSEs are not yet confirmed in experiments. Here, we report the experimental observation of non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various behaviors in different dynamic phases, which can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed dynamic NHSEs, amplifications, bulk unidirectional wave propagation, and boundary wave trapping provide promising ways to manipulate waves in a controllable and robust way. Our findings open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter. Characterizing and classifying dynamic non-Hermitian skin effect is a key challenge in nonHermitian physics. Here, authors illustrated rich non-Hermitian skin dynamics and dynamic phases in one-dimensional systems with glide-time reversal symmetry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39095338</pmid><doi>10.1038/s41467-024-50776-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3652-4351</orcidid><orcidid>https://orcid.org/0000-0001-8371-0339</orcidid><orcidid>https://orcid.org/0000-0001-6505-0998</orcidid><orcidid>https://orcid.org/0000-0002-9153-3181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-08, Vol.15 (1), p.6544-9, Article 6544
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e8e54ee65e84f71857dfa9cf5ba314e
source Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1019/1015
639/766/25/3927
Brillouin zones
Controllability
Dynamic characteristics
Eigenvectors
Humanities and Social Sciences
Inertia
Mechanical properties
Mechanical systems
multidisciplinary
Phase transitions
Phases
Physics
Propagation
Robust control
Science
Science (multidisciplinary)
Skin
Skin effect
Symmetry
Topology
Wave propagation
title Observation of dynamic non-Hermitian skin effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20dynamic%20non-Hermitian%20skin%20effects&rft.jtitle=Nature%20communications&rft.au=Li,%20Zhen&rft.date=2024-08-02&rft.volume=15&rft.issue=1&rft.spage=6544&rft.epage=9&rft.pages=6544-9&rft.artnum=6544&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-50776-1&rft_dat=%3Cproquest_doaj_%3E3087563311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-cb7cf04be9af9db0146e85a4972ec9c3a473e569092a2f4fb548225d7dba43e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087448462&rft_id=info:pmid/39095338&rfr_iscdi=true