Loading…

Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder

Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three si...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric measurement techniques 2016-09, Vol.9 (9), p.4447-4457
Main Authors: Hurst, Dale F, Read, William G, Vömel, Holger, Selkirk, Henry B, Rosenlof, Karen H, Davis, Sean M, Hall, Emrys G, Jordan, Allen F, Oltmans, Samuel J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43
cites cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43
container_end_page 4457
container_issue 9
container_start_page 4447
container_title Atmospheric measurement techniques
container_volume 9
creator Hurst, Dale F
Read, William G
Vömel, Holger
Selkirk, Henry B
Rosenlof, Karen H
Davis, Sean M
Hall, Emrys G
Jordan, Allen F
Oltmans, Samuel J
description Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year (0.6 to 1.5% year ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.
doi_str_mv 10.5194/amt-9-4447-2016
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481669081</galeid><doaj_id>oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd</doaj_id><sourcerecordid>A481669081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</originalsourceid><addsrcrecordid>eNp9ks2PEyEYxidG466rZ2-GxIseZhcYmIGLSbPxo0mNya6eCQPvtDSdoQLTtfGfl7F1tcYYDpCX3_sAD09RPCf4khPJrnSfSlkyxpqSYlI_KM6JqJtScCYeHtekEuSseBLjGuOakYY-Ls6okHVdS3ZefL8BA0NC1u0gLGEwEJEbUExBJx-3KwjOoDudIKCd3vqAetBxDNDnpojaPeqCjwltvcsiq_0y-B4yHJEeLEorQLMxaPTRmeDv9A7QwvUtuvXjYCE8LR51ehPh2XG-KL68e_v5-kO5-PR-fj1blKYmdSpbXjEGmLO2xR0BwTvSYgBstaGWdZSKmliNpaBWGEMZN02rpax4ozNiWHVRzA-61uu12gbX67BXXjv1s-DDUumQnNmAoiDbFnRlKW0Z17UkoK0glbQEc9varPXmoLUd2x7s5F3QmxPR053BrdTS7xSviaScZIFXR4Hgv44Qk-pdNLDZ6AH8GFX-Vd7QCnOc0Zd_oWs_hiFbpSgjLH-srOj_KCJolW2hDf9NLXV-phs6n29npqPVjAmSw4DFdLnLf1B5WOid8QN0LtdPGl6fNGQmwbe01GOMan57c8peHdichRgDdPeuEaymNKucZiXVlGY1pTl3vPjT7Hv-V3yrHww18P0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823982275</pqid></control><display><type>article</type><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</creator><creatorcontrib>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</creatorcontrib><description>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year (0.6 to 1.5% year ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</description><identifier>ISSN: 1867-1381</identifier><identifier>ISSN: 1867-8548</identifier><identifier>EISSN: 1867-8548</identifier><identifier>DOI: 10.5194/amt-9-4447-2016</identifier><identifier>PMID: 28966694</identifier><language>eng</language><publisher>Germany: Copernicus GmbH</publisher><subject>Balloons ; Datasets ; Frost ; Growth rate ; Hygrometers ; Hygrometry ; Instruments ; Lower stratosphere ; Measurement ; Middle atmosphere ; Regression analysis ; Satellites ; Sensors ; Soundings ; Statistical analysis ; Statistical methods ; Stratosphere ; Trends ; Troposphere ; Upper troposphere ; Vertical profiles ; Water vapor ; Water vapor measurements ; Water vapour</subject><ispartof>Atmospheric measurement techniques, 2016-09, Vol.9 (9), p.4447-4457</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</citedby><cites>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</cites><orcidid>0000-0002-6315-2322 ; 0000-0001-5137-2902 ; 0000-0001-9276-6158 ; 0000-0002-7390-2553 ; 0000-0001-9431-5385 ; 0000-0003-1223-3429 ; 0000-0002-0903-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1823982275/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1823982275?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28966694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurst, Dale F</creatorcontrib><creatorcontrib>Read, William G</creatorcontrib><creatorcontrib>Vömel, Holger</creatorcontrib><creatorcontrib>Selkirk, Henry B</creatorcontrib><creatorcontrib>Rosenlof, Karen H</creatorcontrib><creatorcontrib>Davis, Sean M</creatorcontrib><creatorcontrib>Hall, Emrys G</creatorcontrib><creatorcontrib>Jordan, Allen F</creatorcontrib><creatorcontrib>Oltmans, Samuel J</creatorcontrib><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><title>Atmospheric measurement techniques</title><addtitle>Atmos Meas Tech</addtitle><description>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year (0.6 to 1.5% year ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</description><subject>Balloons</subject><subject>Datasets</subject><subject>Frost</subject><subject>Growth rate</subject><subject>Hygrometers</subject><subject>Hygrometry</subject><subject>Instruments</subject><subject>Lower stratosphere</subject><subject>Measurement</subject><subject>Middle atmosphere</subject><subject>Regression analysis</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Soundings</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stratosphere</subject><subject>Trends</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Vertical profiles</subject><subject>Water vapor</subject><subject>Water vapor measurements</subject><subject>Water vapour</subject><issn>1867-1381</issn><issn>1867-8548</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks2PEyEYxidG466rZ2-GxIseZhcYmIGLSbPxo0mNya6eCQPvtDSdoQLTtfGfl7F1tcYYDpCX3_sAD09RPCf4khPJrnSfSlkyxpqSYlI_KM6JqJtScCYeHtekEuSseBLjGuOakYY-Ls6okHVdS3ZefL8BA0NC1u0gLGEwEJEbUExBJx-3KwjOoDudIKCd3vqAetBxDNDnpojaPeqCjwltvcsiq_0y-B4yHJEeLEorQLMxaPTRmeDv9A7QwvUtuvXjYCE8LR51ehPh2XG-KL68e_v5-kO5-PR-fj1blKYmdSpbXjEGmLO2xR0BwTvSYgBstaGWdZSKmliNpaBWGEMZN02rpax4ozNiWHVRzA-61uu12gbX67BXXjv1s-DDUumQnNmAoiDbFnRlKW0Z17UkoK0glbQEc9varPXmoLUd2x7s5F3QmxPR053BrdTS7xSviaScZIFXR4Hgv44Qk-pdNLDZ6AH8GFX-Vd7QCnOc0Zd_oWs_hiFbpSgjLH-srOj_KCJolW2hDf9NLXV-phs6n29npqPVjAmSw4DFdLnLf1B5WOid8QN0LtdPGl6fNGQmwbe01GOMan57c8peHdichRgDdPeuEaymNKucZiXVlGY1pTl3vPjT7Hv-V3yrHww18P0</recordid><startdate>20160908</startdate><enddate>20160908</enddate><creator>Hurst, Dale F</creator><creator>Read, William G</creator><creator>Vömel, Holger</creator><creator>Selkirk, Henry B</creator><creator>Rosenlof, Karen H</creator><creator>Davis, Sean M</creator><creator>Hall, Emrys G</creator><creator>Jordan, Allen F</creator><creator>Oltmans, Samuel J</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6315-2322</orcidid><orcidid>https://orcid.org/0000-0001-5137-2902</orcidid><orcidid>https://orcid.org/0000-0001-9276-6158</orcidid><orcidid>https://orcid.org/0000-0002-7390-2553</orcidid><orcidid>https://orcid.org/0000-0001-9431-5385</orcidid><orcidid>https://orcid.org/0000-0003-1223-3429</orcidid><orcidid>https://orcid.org/0000-0002-0903-8270</orcidid></search><sort><creationdate>20160908</creationdate><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><author>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Balloons</topic><topic>Datasets</topic><topic>Frost</topic><topic>Growth rate</topic><topic>Hygrometers</topic><topic>Hygrometry</topic><topic>Instruments</topic><topic>Lower stratosphere</topic><topic>Measurement</topic><topic>Middle atmosphere</topic><topic>Regression analysis</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Soundings</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stratosphere</topic><topic>Trends</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Vertical profiles</topic><topic>Water vapor</topic><topic>Water vapor measurements</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurst, Dale F</creatorcontrib><creatorcontrib>Read, William G</creatorcontrib><creatorcontrib>Vömel, Holger</creatorcontrib><creatorcontrib>Selkirk, Henry B</creatorcontrib><creatorcontrib>Rosenlof, Karen H</creatorcontrib><creatorcontrib>Davis, Sean M</creatorcontrib><creatorcontrib>Hall, Emrys G</creatorcontrib><creatorcontrib>Jordan, Allen F</creatorcontrib><creatorcontrib>Oltmans, Samuel J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurst, Dale F</au><au>Read, William G</au><au>Vömel, Holger</au><au>Selkirk, Henry B</au><au>Rosenlof, Karen H</au><au>Davis, Sean M</au><au>Hall, Emrys G</au><au>Jordan, Allen F</au><au>Oltmans, Samuel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</atitle><jtitle>Atmospheric measurement techniques</jtitle><addtitle>Atmos Meas Tech</addtitle><date>2016-09-08</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>4447</spage><epage>4457</epage><pages>4447-4457</pages><issn>1867-1381</issn><issn>1867-8548</issn><eissn>1867-8548</eissn><abstract>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year (0.6 to 1.5% year ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</abstract><cop>Germany</cop><pub>Copernicus GmbH</pub><pmid>28966694</pmid><doi>10.5194/amt-9-4447-2016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6315-2322</orcidid><orcidid>https://orcid.org/0000-0001-5137-2902</orcidid><orcidid>https://orcid.org/0000-0001-9276-6158</orcidid><orcidid>https://orcid.org/0000-0002-7390-2553</orcidid><orcidid>https://orcid.org/0000-0001-9431-5385</orcidid><orcidid>https://orcid.org/0000-0003-1223-3429</orcidid><orcidid>https://orcid.org/0000-0002-0903-8270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-1381
ispartof Atmospheric measurement techniques, 2016-09, Vol.9 (9), p.4447-4457
issn 1867-1381
1867-8548
1867-8548
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals
subjects Balloons
Datasets
Frost
Growth rate
Hygrometers
Hygrometry
Instruments
Lower stratosphere
Measurement
Middle atmosphere
Regression analysis
Satellites
Sensors
Soundings
Statistical analysis
Statistical methods
Stratosphere
Trends
Troposphere
Upper troposphere
Vertical profiles
Water vapor
Water vapor measurements
Water vapour
title Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20divergences%20in%20stratospheric%20water%20vapor%20measurements%20by%20frost%20point%20hygrometers%20and%20the%20Aura%20Microwave%20Limb%20Sounder&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Hurst,%20Dale%20F&rft.date=2016-09-08&rft.volume=9&rft.issue=9&rft.spage=4447&rft.epage=4457&rft.pages=4447-4457&rft.issn=1867-1381&rft.eissn=1867-8548&rft_id=info:doi/10.5194/amt-9-4447-2016&rft_dat=%3Cgale_doaj_%3EA481669081%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1823982275&rft_id=info:pmid/28966694&rft_galeid=A481669081&rfr_iscdi=true