Loading…
Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder
Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three si...
Saved in:
Published in: | Atmospheric measurement techniques 2016-09, Vol.9 (9), p.4447-4457 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43 |
---|---|
cites | cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43 |
container_end_page | 4457 |
container_issue | 9 |
container_start_page | 4447 |
container_title | Atmospheric measurement techniques |
container_volume | 9 |
creator | Hurst, Dale F Read, William G Vömel, Holger Selkirk, Henry B Rosenlof, Karen H Davis, Sean M Hall, Emrys G Jordan, Allen F Oltmans, Samuel J |
description | Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year
(0.6 to 1.5% year
) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year
) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements. |
doi_str_mv | 10.5194/amt-9-4447-2016 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481669081</galeid><doaj_id>oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd</doaj_id><sourcerecordid>A481669081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</originalsourceid><addsrcrecordid>eNp9ks2PEyEYxidG466rZ2-GxIseZhcYmIGLSbPxo0mNya6eCQPvtDSdoQLTtfGfl7F1tcYYDpCX3_sAD09RPCf4khPJrnSfSlkyxpqSYlI_KM6JqJtScCYeHtekEuSseBLjGuOakYY-Ls6okHVdS3ZefL8BA0NC1u0gLGEwEJEbUExBJx-3KwjOoDudIKCd3vqAetBxDNDnpojaPeqCjwltvcsiq_0y-B4yHJEeLEorQLMxaPTRmeDv9A7QwvUtuvXjYCE8LR51ehPh2XG-KL68e_v5-kO5-PR-fj1blKYmdSpbXjEGmLO2xR0BwTvSYgBstaGWdZSKmliNpaBWGEMZN02rpax4ozNiWHVRzA-61uu12gbX67BXXjv1s-DDUumQnNmAoiDbFnRlKW0Z17UkoK0glbQEc9varPXmoLUd2x7s5F3QmxPR053BrdTS7xSviaScZIFXR4Hgv44Qk-pdNLDZ6AH8GFX-Vd7QCnOc0Zd_oWs_hiFbpSgjLH-srOj_KCJolW2hDf9NLXV-phs6n29npqPVjAmSw4DFdLnLf1B5WOid8QN0LtdPGl6fNGQmwbe01GOMan57c8peHdichRgDdPeuEaymNKucZiXVlGY1pTl3vPjT7Hv-V3yrHww18P0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823982275</pqid></control><display><type>article</type><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</creator><creatorcontrib>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</creatorcontrib><description>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year
(0.6 to 1.5% year
) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year
) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</description><identifier>ISSN: 1867-1381</identifier><identifier>ISSN: 1867-8548</identifier><identifier>EISSN: 1867-8548</identifier><identifier>DOI: 10.5194/amt-9-4447-2016</identifier><identifier>PMID: 28966694</identifier><language>eng</language><publisher>Germany: Copernicus GmbH</publisher><subject>Balloons ; Datasets ; Frost ; Growth rate ; Hygrometers ; Hygrometry ; Instruments ; Lower stratosphere ; Measurement ; Middle atmosphere ; Regression analysis ; Satellites ; Sensors ; Soundings ; Statistical analysis ; Statistical methods ; Stratosphere ; Trends ; Troposphere ; Upper troposphere ; Vertical profiles ; Water vapor ; Water vapor measurements ; Water vapour</subject><ispartof>Atmospheric measurement techniques, 2016-09, Vol.9 (9), p.4447-4457</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</citedby><cites>FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</cites><orcidid>0000-0002-6315-2322 ; 0000-0001-5137-2902 ; 0000-0001-9276-6158 ; 0000-0002-7390-2553 ; 0000-0001-9431-5385 ; 0000-0003-1223-3429 ; 0000-0002-0903-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1823982275/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1823982275?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28966694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurst, Dale F</creatorcontrib><creatorcontrib>Read, William G</creatorcontrib><creatorcontrib>Vömel, Holger</creatorcontrib><creatorcontrib>Selkirk, Henry B</creatorcontrib><creatorcontrib>Rosenlof, Karen H</creatorcontrib><creatorcontrib>Davis, Sean M</creatorcontrib><creatorcontrib>Hall, Emrys G</creatorcontrib><creatorcontrib>Jordan, Allen F</creatorcontrib><creatorcontrib>Oltmans, Samuel J</creatorcontrib><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><title>Atmospheric measurement techniques</title><addtitle>Atmos Meas Tech</addtitle><description>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year
(0.6 to 1.5% year
) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year
) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</description><subject>Balloons</subject><subject>Datasets</subject><subject>Frost</subject><subject>Growth rate</subject><subject>Hygrometers</subject><subject>Hygrometry</subject><subject>Instruments</subject><subject>Lower stratosphere</subject><subject>Measurement</subject><subject>Middle atmosphere</subject><subject>Regression analysis</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Soundings</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stratosphere</subject><subject>Trends</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Vertical profiles</subject><subject>Water vapor</subject><subject>Water vapor measurements</subject><subject>Water vapour</subject><issn>1867-1381</issn><issn>1867-8548</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks2PEyEYxidG466rZ2-GxIseZhcYmIGLSbPxo0mNya6eCQPvtDSdoQLTtfGfl7F1tcYYDpCX3_sAD09RPCf4khPJrnSfSlkyxpqSYlI_KM6JqJtScCYeHtekEuSseBLjGuOakYY-Ls6okHVdS3ZefL8BA0NC1u0gLGEwEJEbUExBJx-3KwjOoDudIKCd3vqAetBxDNDnpojaPeqCjwltvcsiq_0y-B4yHJEeLEorQLMxaPTRmeDv9A7QwvUtuvXjYCE8LR51ehPh2XG-KL68e_v5-kO5-PR-fj1blKYmdSpbXjEGmLO2xR0BwTvSYgBstaGWdZSKmliNpaBWGEMZN02rpax4ozNiWHVRzA-61uu12gbX67BXXjv1s-DDUumQnNmAoiDbFnRlKW0Z17UkoK0glbQEc9varPXmoLUd2x7s5F3QmxPR053BrdTS7xSviaScZIFXR4Hgv44Qk-pdNLDZ6AH8GFX-Vd7QCnOc0Zd_oWs_hiFbpSgjLH-srOj_KCJolW2hDf9NLXV-phs6n29npqPVjAmSw4DFdLnLf1B5WOid8QN0LtdPGl6fNGQmwbe01GOMan57c8peHdichRgDdPeuEaymNKucZiXVlGY1pTl3vPjT7Hv-V3yrHww18P0</recordid><startdate>20160908</startdate><enddate>20160908</enddate><creator>Hurst, Dale F</creator><creator>Read, William G</creator><creator>Vömel, Holger</creator><creator>Selkirk, Henry B</creator><creator>Rosenlof, Karen H</creator><creator>Davis, Sean M</creator><creator>Hall, Emrys G</creator><creator>Jordan, Allen F</creator><creator>Oltmans, Samuel J</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6315-2322</orcidid><orcidid>https://orcid.org/0000-0001-5137-2902</orcidid><orcidid>https://orcid.org/0000-0001-9276-6158</orcidid><orcidid>https://orcid.org/0000-0002-7390-2553</orcidid><orcidid>https://orcid.org/0000-0001-9431-5385</orcidid><orcidid>https://orcid.org/0000-0003-1223-3429</orcidid><orcidid>https://orcid.org/0000-0002-0903-8270</orcidid></search><sort><creationdate>20160908</creationdate><title>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</title><author>Hurst, Dale F ; Read, William G ; Vömel, Holger ; Selkirk, Henry B ; Rosenlof, Karen H ; Davis, Sean M ; Hall, Emrys G ; Jordan, Allen F ; Oltmans, Samuel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Balloons</topic><topic>Datasets</topic><topic>Frost</topic><topic>Growth rate</topic><topic>Hygrometers</topic><topic>Hygrometry</topic><topic>Instruments</topic><topic>Lower stratosphere</topic><topic>Measurement</topic><topic>Middle atmosphere</topic><topic>Regression analysis</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Soundings</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stratosphere</topic><topic>Trends</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Vertical profiles</topic><topic>Water vapor</topic><topic>Water vapor measurements</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurst, Dale F</creatorcontrib><creatorcontrib>Read, William G</creatorcontrib><creatorcontrib>Vömel, Holger</creatorcontrib><creatorcontrib>Selkirk, Henry B</creatorcontrib><creatorcontrib>Rosenlof, Karen H</creatorcontrib><creatorcontrib>Davis, Sean M</creatorcontrib><creatorcontrib>Hall, Emrys G</creatorcontrib><creatorcontrib>Jordan, Allen F</creatorcontrib><creatorcontrib>Oltmans, Samuel J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurst, Dale F</au><au>Read, William G</au><au>Vömel, Holger</au><au>Selkirk, Henry B</au><au>Rosenlof, Karen H</au><au>Davis, Sean M</au><au>Hall, Emrys G</au><au>Jordan, Allen F</au><au>Oltmans, Samuel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder</atitle><jtitle>Atmospheric measurement techniques</jtitle><addtitle>Atmos Meas Tech</addtitle><date>2016-09-08</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>4447</spage><epage>4457</epage><pages>4447-4457</pages><issn>1867-1381</issn><issn>1867-8548</issn><eissn>1867-8548</eissn><abstract>Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year
(0.6 to 1.5% year
) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year
) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.</abstract><cop>Germany</cop><pub>Copernicus GmbH</pub><pmid>28966694</pmid><doi>10.5194/amt-9-4447-2016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6315-2322</orcidid><orcidid>https://orcid.org/0000-0001-5137-2902</orcidid><orcidid>https://orcid.org/0000-0001-9276-6158</orcidid><orcidid>https://orcid.org/0000-0002-7390-2553</orcidid><orcidid>https://orcid.org/0000-0001-9431-5385</orcidid><orcidid>https://orcid.org/0000-0003-1223-3429</orcidid><orcidid>https://orcid.org/0000-0002-0903-8270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-1381 |
ispartof | Atmospheric measurement techniques, 2016-09, Vol.9 (9), p.4447-4457 |
issn | 1867-1381 1867-8548 1867-8548 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2e9bbea3d22b45a691ead8139d105dbd |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | Balloons Datasets Frost Growth rate Hygrometers Hygrometry Instruments Lower stratosphere Measurement Middle atmosphere Regression analysis Satellites Sensors Soundings Statistical analysis Statistical methods Stratosphere Trends Troposphere Upper troposphere Vertical profiles Water vapor Water vapor measurements Water vapour |
title | Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20divergences%20in%20stratospheric%20water%20vapor%20measurements%20by%20frost%20point%20hygrometers%20and%20the%20Aura%20Microwave%20Limb%20Sounder&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Hurst,%20Dale%20F&rft.date=2016-09-08&rft.volume=9&rft.issue=9&rft.spage=4447&rft.epage=4457&rft.pages=4447-4457&rft.issn=1867-1381&rft.eissn=1867-8548&rft_id=info:doi/10.5194/amt-9-4447-2016&rft_dat=%3Cgale_doaj_%3EA481669081%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c616t-b5344e054bb0f1e85f1b0ee0dac2d4f22861da0982d8cc245c7ba99357adacc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1823982275&rft_id=info:pmid/28966694&rft_galeid=A481669081&rfr_iscdi=true |