Loading…

A new instrument to measure plot-scale runoff

Accurate measurement of the amount and timing of surface runoff at multiple scales is needed to understand fundamental hydrological processes. At the plot scale (i.e., length scales on the order of 1–10 m) current methods for direct measurement of runoff either store the water in a collection vessel...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific instrumentation, methods and data systems methods and data systems, 2015-01, Vol.4 (1), p.57-64
Main Authors: Stewart, R D, Liu, Z, Rupp, D E, Higgins, C W, Selker, J S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate measurement of the amount and timing of surface runoff at multiple scales is needed to understand fundamental hydrological processes. At the plot scale (i.e., length scales on the order of 1–10 m) current methods for direct measurement of runoff either store the water in a collection vessel, which is not conducive to long-term monitoring studies, or utilize expensive installations such as large-scale tipping buckets or flume/weir systems. We developed an alternative low-cost, robust and reliable instrument to measure runoff that we call the "Upwelling Bernoulli Tube" (UBeTube). The UBeTube instrument is a pipe with a slot machined in its side that is installed vertically at the base of a runoff collection system. The flow rate through the slot is inferred by measuring the water height within the pipe. The geometry of the slot can be modified to suit the range of flow rates expected for a given site; we demonstrate a slot geometry that is capable of measuring flow rates across more than 3 orders of magnitude (up to 300 L min−1) while requiring only 30 cm of hydraulic head. System accuracy is dependent on both the geometry of the slot and the accuracy of the water level measurements. Using a pressure sensor with ±7 mm accuracy, the mean theoretical error for the demonstrated slot geometry was ~17% (ranging from errors of more than 50% at low flow rates to less than 2% at high flow rates), while the observed error during validation was 1–25%. A simple correction factor reduced this mean error to 0–14%, and further reductions in error could be achieved through the use of taller, narrower slot dimensions (which requires greater head gradients to drive flow) or through more accurate water level measurements. The UBeTube device has been successfully employed in a long-term rainfall-runoff study, demonstrating the ability of the instrument to measure surface runoff across a range of flows and conditions.
ISSN:2193-0864
2193-0856
2193-0864
DOI:10.5194/gi-4-57-2015