Loading…
Key Node Ranking in Complex Networks: A Novel Entropy and Mutual Information-Based Approach
Numerous problems in many fields can be solved effectively through the approach of modeling by complex network analysis. Finding key nodes is one of the most important and challenging problems in network analysis. In previous studies, methods have been proposed to identify key nodes. However, they r...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2019-12, Vol.22 (1), p.52 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerous problems in many fields can be solved effectively through the approach of modeling by complex network analysis. Finding key nodes is one of the most important and challenging problems in network analysis. In previous studies, methods have been proposed to identify key nodes. However, they rely mainly on a limited field of local information, lack large-scale access to global information, and are also usually NP-hard. In this paper, a novel entropy and mutual information-based centrality approach (EMI) is proposed, which attempts to capture a far wider range and a greater abundance of information for assessing how vital a node is. We have developed countermeasures to assess the influence of nodes: EMI is no longer confined to neighbor nodes, and both topological and digital network characteristics are taken into account. We employ mutual information to fix a flaw that exists in many methods. Experiments on real-world connected networks demonstrate the outstanding performance of the proposed approach in both correctness and efficiency as compared with previous approaches. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e22010052 |