Loading…

The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update

Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregul...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-07, Vol.23 (13), p.7126
Main Authors: Choi, Pui-Wah, Liu, Tin Lun, Wong, Chun Wai, Liu, Sze Kei, Lum, Yick-Liang, Ming, Wai-Kit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23137126