Loading…
Optimized protocol for whole organ decellularization
The idea of tissue decellularization to gain matrices for tissue engineering is promising. The aim of the present study is to establish a safe and reproducible protocol for solid tissue decellularization that prevents the architecture of the matrix with the inherent vascular network. The study was p...
Saved in:
Published in: | European journal of medical research 2017-09, Vol.22 (1), p.31-9, Article 31 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The idea of tissue decellularization to gain matrices for tissue engineering is promising. The aim of the present study is to establish a safe and reproducible protocol for solid tissue decellularization that prevents the architecture of the matrix with the inherent vascular network.
The study was performed in rat kidneys which were decellularized by a SDS-based perfusion protocol. Perfusion time and SDS concentration were systematically changed to obtain the shortest and most gentle protocol that leads to complete decellularization.
We investigated kinetics of protein elution, decellularization success, and remaining cell toxicity. This resulted in a reproducible protocol, leading to safe decellularization with prevention of the inherent vascular network, without remaining detectable cell toxicity. The established protocol leads to solid tissue decellularization in only 7 h, which is by far shorter than the previously published methods.
The established technique has the potential to become a relevant platform technology for tissue engineering of solid tissues. It provides a solution for the yet-unsolved problem of vascularization. |
---|---|
ISSN: | 2047-783X 0949-2321 2047-783X |
DOI: | 10.1186/s40001-017-0272-y |