Loading…

Influence of Stabilized Biosolids Application on Availability of Phosphorus, Copper, and Zinc

The main aim of this study was to examine the influence of sewage sludge (SS) and stabilized SS application on Olsen-P and DTPA-extractable Cu and Zn in relation to soil type, sewage source, mixing rate and incubation time. Two different SS were mixed with amendments by mixing rates 10 and 25%. Thes...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Soil Science 2012, Vol.2012 (2012), p.565-575
Main Authors: Ibrahim, S. M., Shaheen, S. M., Shams, M. S., Elbehiry, F. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main aim of this study was to examine the influence of sewage sludge (SS) and stabilized SS application on Olsen-P and DTPA-extractable Cu and Zn in relation to soil type, sewage source, mixing rate and incubation time. Two different SS were mixed with amendments by mixing rates 10 and 25%. These amendments include coal fly ash (CFA), bentonite (B), sugar beet factory lime (SBFL), calcium carbonate, rice straw (RS), water hyacinth (WH), and cotton stalks (CS). Treated and untreated SS had been applied to fluvial and calcareous soil with application rate 2.5% and incubated for one and two month. After incubation, soil samples were analyzed for Olsen-P and DTPA-extractable Cu and Zn. Application of SS increased significantly Olsen-P and DTPA extractable Cu and Zn compared to control. Application of stabilized SS increased significantly Olsen-P, with high increasing rate with SBFL and WH-stabilized SS. Stabilized-SS decreased significantly Cu and Zn availability compared to mono SS treatment. Bentonite-, SBFL and CFA-stabilized SS were the highest among inorganic treatments for reducing available Cu and Zn either in fluvial or calcareous soil, while WH and RS-stabilized SS treatment were the most suitable organic ones for reducing DTPA-extractable Cu and Zn.
ISSN:1687-7667
1687-7675
DOI:10.1155/2012/817158