Loading…

The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system

Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2021-10, Vol.81 (10), p.1-13
Main Authors: Xuejie Liu, Hongxia Huang, Jialun Ping, Dianyong Chen, Xinmei Zhu
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13
container_issue 10
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 81
creator Xuejie Liu
Hongxia Huang
Jialun Ping
Dianyong Chen
Xinmei Zhu
description Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.
doi_str_mv 10.1140/epjc/s10052-021-09752-y
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</doaj_id><sourcerecordid>oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3</originalsourceid><addsrcrecordid>eNqtjUtOxDAMhiMEEsPjDGTRbRmnTdvpGoFgP0ukymRcSGmbEgeJatQzcQdORniIE7Cw_0-fftlCXCi4VErDmqbOrFkBFFkKmUqhriLNB2KldK7TMvrDP9b6WJwwdwCQadisBG2fSNLb1OOIwbpRulayG76cC9ZIDhiIpR1liMUkMby_f0C_N8vyA7wsSSJjMc7He4y4AgWPL6_onyXPHGg4E0ct9kznv3kq7m6ut1e36c5h10zeDujnxqFtvoXzjw36-L6nJmurHZjWVEVZar2hWhtT1AVpyitT15T_561Pht9qgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</creator><creatorcontrib>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</creatorcontrib><description>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09752-y</identifier><language>eng</language><publisher>SpringerOpen</publisher><ispartof>The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10), p.1-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xuejie Liu</creatorcontrib><creatorcontrib>Hongxia Huang</creatorcontrib><creatorcontrib>Jialun Ping</creatorcontrib><creatorcontrib>Dianyong Chen</creatorcontrib><creatorcontrib>Xinmei Zhu</creatorcontrib><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><title>The European physical journal. C, Particles and fields</title><description>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjUtOxDAMhiMEEsPjDGTRbRmnTdvpGoFgP0ukymRcSGmbEgeJatQzcQdORniIE7Cw_0-fftlCXCi4VErDmqbOrFkBFFkKmUqhriLNB2KldK7TMvrDP9b6WJwwdwCQadisBG2fSNLb1OOIwbpRulayG76cC9ZIDhiIpR1liMUkMby_f0C_N8vyA7wsSSJjMc7He4y4AgWPL6_onyXPHGg4E0ct9kznv3kq7m6ut1e36c5h10zeDujnxqFtvoXzjw36-L6nJmurHZjWVEVZar2hWhtT1AVpyitT15T_561Pht9qgg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Xuejie Liu</creator><creator>Hongxia Huang</creator><creator>Jialun Ping</creator><creator>Dianyong Chen</creator><creator>Xinmei Zhu</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20211001</creationdate><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><author>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuejie Liu</creatorcontrib><creatorcontrib>Hongxia Huang</creatorcontrib><creatorcontrib>Jialun Ping</creatorcontrib><creatorcontrib>Dianyong Chen</creatorcontrib><creatorcontrib>Xinmei Zhu</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuejie Liu</au><au>Hongxia Huang</au><au>Jialun Ping</au><au>Dianyong Chen</au><au>Xinmei Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>81</volume><issue>10</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</abstract><pub>SpringerOpen</pub><doi>10.1140/epjc/s10052-021-09752-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10), p.1-13
issn 1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
title The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20explanation%20of%20some%20exotic%20states%20in%20the%20$$cs%7B%5Cbar%7Bc%7D%7D%7B%5Cbar%7Bs%7D%7D$$%20c%20s%20c%20%C2%AF%20s%20%C2%AF%20tetraquark%20system&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Xuejie%20Liu&rft.date=2021-10-01&rft.volume=81&rft.issue=10&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09752-y&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true