Loading…
The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system
Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2021-10, Vol.81 (10), p.1-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13 |
container_issue | 10 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 81 |
creator | Xuejie Liu Hongxia Huang Jialun Ping Dianyong Chen Xinmei Zhu |
description | Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states. |
doi_str_mv | 10.1140/epjc/s10052-021-09752-y |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</doaj_id><sourcerecordid>oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3</originalsourceid><addsrcrecordid>eNqtjUtOxDAMhiMEEsPjDGTRbRmnTdvpGoFgP0ukymRcSGmbEgeJatQzcQdORniIE7Cw_0-fftlCXCi4VErDmqbOrFkBFFkKmUqhriLNB2KldK7TMvrDP9b6WJwwdwCQadisBG2fSNLb1OOIwbpRulayG76cC9ZIDhiIpR1liMUkMby_f0C_N8vyA7wsSSJjMc7He4y4AgWPL6_onyXPHGg4E0ct9kznv3kq7m6ut1e36c5h10zeDujnxqFtvoXzjw36-L6nJmurHZjWVEVZar2hWhtT1AVpyitT15T_561Pht9qgg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</creator><creatorcontrib>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</creatorcontrib><description>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-021-09752-y</identifier><language>eng</language><publisher>SpringerOpen</publisher><ispartof>The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10), p.1-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xuejie Liu</creatorcontrib><creatorcontrib>Hongxia Huang</creatorcontrib><creatorcontrib>Jialun Ping</creatorcontrib><creatorcontrib>Dianyong Chen</creatorcontrib><creatorcontrib>Xinmei Zhu</creatorcontrib><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><title>The European physical journal. C, Particles and fields</title><description>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjUtOxDAMhiMEEsPjDGTRbRmnTdvpGoFgP0ukymRcSGmbEgeJatQzcQdORniIE7Cw_0-fftlCXCi4VErDmqbOrFkBFFkKmUqhriLNB2KldK7TMvrDP9b6WJwwdwCQadisBG2fSNLb1OOIwbpRulayG76cC9ZIDhiIpR1liMUkMby_f0C_N8vyA7wsSSJjMc7He4y4AgWPL6_onyXPHGg4E0ct9kznv3kq7m6ut1e36c5h10zeDujnxqFtvoXzjw36-L6nJmurHZjWVEVZar2hWhtT1AVpyitT15T_561Pht9qgg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Xuejie Liu</creator><creator>Hongxia Huang</creator><creator>Jialun Ping</creator><creator>Dianyong Chen</creator><creator>Xinmei Zhu</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20211001</creationdate><title>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</title><author>Xuejie Liu ; Hongxia Huang ; Jialun Ping ; Dianyong Chen ; Xinmei Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuejie Liu</creatorcontrib><creatorcontrib>Hongxia Huang</creatorcontrib><creatorcontrib>Jialun Ping</creatorcontrib><creatorcontrib>Dianyong Chen</creatorcontrib><creatorcontrib>Xinmei Zhu</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuejie Liu</au><au>Hongxia Huang</au><au>Jialun Ping</au><au>Dianyong Chen</au><au>Xinmei Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>81</volume><issue>10</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Abstract Inspired by the recent observation of $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) , X(4685) and X(4630) by the LHCb Collaboration and some exotic resonances such as X(4350), X(4500), etc. by several experiment collaborations, the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark systems with $$J^{PC}=0^{++}$$ J PC = 0 + + , $$1^{++}$$ 1 + + , $$1^{+-}$$ 1 + - and $$2^{++}$$ 2 + + are systematically investigated in the framework of the quark delocalization color screening model(QDCSM). Two structures, the meson–meson and diquark–antidiquark structures, as well as the channel-coupling of all channels of these two configurations are considered in this work. The numerical results indicate that the molecular bound state $$D^{-}_{s}D_{s}^{+}$$ D s - D s + with $$J^{PC}=00^{++}$$ J PC = 00 + + can be supposed to explain the $$\chi _{c0}(3930)$$ χ c 0 ( 3930 ) . Besides, by using the stabilization method, several resonant states are obtained. Among these states, X(4350), X(4500) and X(4700) can be explained as the compact tetraquark states with $$J^{PC}=00^{++}$$ J PC = 00 + + , and the X(4274) is possible to be a candidate of the compact tetraquark state with $$J^{PC}=1^{++}$$ J PC = 1 + + . Apart from that, the $$J^{PC}=0^{++}$$ J PC = 0 + + resonance state with energy range 4028–4033 MeV, the two $$J^{PC}=2^{++}$$ J PC = 2 + + resonance states with energy range of 4394–4448 MeV and 4526–4536 MeV are possible to be new exotic states, which are indeed worthy of attention. More experimental tests are expected to check the existence of all these possible resonance states.</abstract><pub>SpringerOpen</pub><doi>10.1140/epjc/s10052-021-09752-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2021-10, Vol.81 (10), p.1-13 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
title | The explanation of some exotic states in the $$cs{\bar{c}}{\bar{s}}$$ c s c ¯ s ¯ tetraquark system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20explanation%20of%20some%20exotic%20states%20in%20the%20$$cs%7B%5Cbar%7Bc%7D%7D%7B%5Cbar%7Bs%7D%7D$$%20c%20s%20c%20%C2%AF%20s%20%C2%AF%20tetraquark%20system&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Xuejie%20Liu&rft.date=2021-10-01&rft.volume=81&rft.issue=10&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-021-09752-y&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_2f7d0cfc7566448e94cc595e4e37c99e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |