Loading…
Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation
Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the propor...
Saved in:
Published in: | Membranes (Basel) 2021-05, Vol.11 (6), p.404 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443 |
container_end_page | |
container_issue | 6 |
container_start_page | 404 |
container_title | Membranes (Basel) |
container_volume | 11 |
creator | Tang, Po-Hsiang So, Pamela Berilyn Li, Wa-Hua Hui, Zi-You Hu, Chien-Chieh Lin, Chia-Her |
description | Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed. |
doi_str_mv | 10.3390/membranes11060404 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad</doaj_id><sourcerecordid>2544893972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</originalsourceid><addsrcrecordid>eNplkUtvEzEQxy0EolXaD8BtJS5cQm2P148LUllSiNQqlQCJm-XXto5218HeIPj2GBIh2s5lRjN__eaF0CuC3wIofDGG0WYzhUII5phh9gydUizEEoNon_8Xn6DzUra4GsctB_wSnQDDgrQgTtG6M9mmqfkQ08_oQ7OacnT3Y5jm5nb1_vLbxc3mqunSuEslzqG5OTZt-pSbbkObz2Fnspljms7Qi94MJZwf_QJ9vVp96T4trzcf193l9dIxjOelk44q7qlVVEkHnoNrrZOspRIk4VZSEqygIClznhBQEqxygWLuoTeMwQKtD1yfzFbvchxN_qWTifpvIuU7bfIc3RA07VXv217aNijGPDOs50JA4EJZL4yvrHcH1m5vx-BdXTub4QH0YWWK9_ou_dCSUokJVMCbIyCn7_tQZj3G4sIw1BulfdG0Bc64aBWp0tePpNu0z1M9VVUxJhWouvYCkYPK5VRKDv2_YQjWf_6un_wdfgNd8Z78</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544893972</pqid></control><display><type>article</type><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</creator><creatorcontrib>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</creatorcontrib><description>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11060404</identifier><identifier>PMID: 34071537</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Carbon dioxide ; carbon dioxide capture ; Climate change ; Composite materials ; Ethanol ; Gas separation ; Imidazole ; Iron ; Membrane permeability ; Membranes ; metal-organic framework ; Metal-organic frameworks ; mixed matrix membranes ; MOF-polymer composite ; Nanocrystals ; Nitrates ; Performance tests ; Permeability ; Polymers ; Porous materials ; Research methodology ; Selectivity ; Upper bounds</subject><ispartof>Membranes (Basel), 2021-05, Vol.11 (6), p.404</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</citedby><cites>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</cites><orcidid>0000-0001-9337-595X ; 0000-0002-1360-0828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544893972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544893972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Tang, Po-Hsiang</creatorcontrib><creatorcontrib>So, Pamela Berilyn</creatorcontrib><creatorcontrib>Li, Wa-Hua</creatorcontrib><creatorcontrib>Hui, Zi-You</creatorcontrib><creatorcontrib>Hu, Chien-Chieh</creatorcontrib><creatorcontrib>Lin, Chia-Her</creatorcontrib><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><title>Membranes (Basel)</title><description>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</description><subject>Aluminum</subject><subject>Carbon dioxide</subject><subject>carbon dioxide capture</subject><subject>Climate change</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Gas separation</subject><subject>Imidazole</subject><subject>Iron</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>metal-organic framework</subject><subject>Metal-organic frameworks</subject><subject>mixed matrix membranes</subject><subject>MOF-polymer composite</subject><subject>Nanocrystals</subject><subject>Nitrates</subject><subject>Performance tests</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Research methodology</subject><subject>Selectivity</subject><subject>Upper bounds</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtvEzEQxy0EolXaD8BtJS5cQm2P148LUllSiNQqlQCJm-XXto5218HeIPj2GBIh2s5lRjN__eaF0CuC3wIofDGG0WYzhUII5phh9gydUizEEoNon_8Xn6DzUra4GsctB_wSnQDDgrQgTtG6M9mmqfkQ08_oQ7OacnT3Y5jm5nb1_vLbxc3mqunSuEslzqG5OTZt-pSbbkObz2Fnspljms7Qi94MJZwf_QJ9vVp96T4trzcf193l9dIxjOelk44q7qlVVEkHnoNrrZOspRIk4VZSEqygIClznhBQEqxygWLuoTeMwQKtD1yfzFbvchxN_qWTifpvIuU7bfIc3RA07VXv217aNijGPDOs50JA4EJZL4yvrHcH1m5vx-BdXTub4QH0YWWK9_ou_dCSUokJVMCbIyCn7_tQZj3G4sIw1BulfdG0Bc64aBWp0tePpNu0z1M9VVUxJhWouvYCkYPK5VRKDv2_YQjWf_6un_wdfgNd8Z78</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Tang, Po-Hsiang</creator><creator>So, Pamela Berilyn</creator><creator>Li, Wa-Hua</creator><creator>Hui, Zi-You</creator><creator>Hu, Chien-Chieh</creator><creator>Lin, Chia-Her</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9337-595X</orcidid><orcidid>https://orcid.org/0000-0002-1360-0828</orcidid></search><sort><creationdate>20210528</creationdate><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><author>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Carbon dioxide</topic><topic>carbon dioxide capture</topic><topic>Climate change</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Gas separation</topic><topic>Imidazole</topic><topic>Iron</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>metal-organic framework</topic><topic>Metal-organic frameworks</topic><topic>mixed matrix membranes</topic><topic>MOF-polymer composite</topic><topic>Nanocrystals</topic><topic>Nitrates</topic><topic>Performance tests</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Research methodology</topic><topic>Selectivity</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Po-Hsiang</creatorcontrib><creatorcontrib>So, Pamela Berilyn</creatorcontrib><creatorcontrib>Li, Wa-Hua</creatorcontrib><creatorcontrib>Hui, Zi-You</creatorcontrib><creatorcontrib>Hu, Chien-Chieh</creatorcontrib><creatorcontrib>Lin, Chia-Her</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Po-Hsiang</au><au>So, Pamela Berilyn</au><au>Li, Wa-Hua</au><au>Hui, Zi-You</au><au>Hu, Chien-Chieh</au><au>Lin, Chia-Her</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</atitle><jtitle>Membranes (Basel)</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>404</spage><pages>404-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34071537</pmid><doi>10.3390/membranes11060404</doi><orcidid>https://orcid.org/0000-0001-9337-595X</orcidid><orcidid>https://orcid.org/0000-0002-1360-0828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2021-05, Vol.11 (6), p.404 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad |
source | Publicly Available Content Database; PubMed Central |
subjects | Aluminum Carbon dioxide carbon dioxide capture Climate change Composite materials Ethanol Gas separation Imidazole Iron Membrane permeability Membranes metal-organic framework Metal-organic frameworks mixed matrix membranes MOF-polymer composite Nanocrystals Nitrates Performance tests Permeability Polymers Porous materials Research methodology Selectivity Upper bounds |
title | Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Enrichment%20PEBAX/MOF%20Composite%20Membrane%20for%20CO2%20Separation&rft.jtitle=Membranes%20(Basel)&rft.au=Tang,%20Po-Hsiang&rft.date=2021-05-28&rft.volume=11&rft.issue=6&rft.spage=404&rft.pages=404-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11060404&rft_dat=%3Cproquest_doaj_%3E2544893972%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544893972&rft_id=info:pmid/34071537&rfr_iscdi=true |