Loading…

Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation

Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the propor...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2021-05, Vol.11 (6), p.404
Main Authors: Tang, Po-Hsiang, So, Pamela Berilyn, Li, Wa-Hua, Hui, Zi-You, Hu, Chien-Chieh, Lin, Chia-Her
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443
cites cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443
container_end_page
container_issue 6
container_start_page 404
container_title Membranes (Basel)
container_volume 11
creator Tang, Po-Hsiang
So, Pamela Berilyn
Li, Wa-Hua
Hui, Zi-You
Hu, Chien-Chieh
Lin, Chia-Her
description Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.
doi_str_mv 10.3390/membranes11060404
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad</doaj_id><sourcerecordid>2544893972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</originalsourceid><addsrcrecordid>eNplkUtvEzEQxy0EolXaD8BtJS5cQm2P148LUllSiNQqlQCJm-XXto5218HeIPj2GBIh2s5lRjN__eaF0CuC3wIofDGG0WYzhUII5phh9gydUizEEoNon_8Xn6DzUra4GsctB_wSnQDDgrQgTtG6M9mmqfkQ08_oQ7OacnT3Y5jm5nb1_vLbxc3mqunSuEslzqG5OTZt-pSbbkObz2Fnspljms7Qi94MJZwf_QJ9vVp96T4trzcf193l9dIxjOelk44q7qlVVEkHnoNrrZOspRIk4VZSEqygIClznhBQEqxygWLuoTeMwQKtD1yfzFbvchxN_qWTifpvIuU7bfIc3RA07VXv217aNijGPDOs50JA4EJZL4yvrHcH1m5vx-BdXTub4QH0YWWK9_ou_dCSUokJVMCbIyCn7_tQZj3G4sIw1BulfdG0Bc64aBWp0tePpNu0z1M9VVUxJhWouvYCkYPK5VRKDv2_YQjWf_6un_wdfgNd8Z78</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544893972</pqid></control><display><type>article</type><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</creator><creatorcontrib>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</creatorcontrib><description>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11060404</identifier><identifier>PMID: 34071537</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Carbon dioxide ; carbon dioxide capture ; Climate change ; Composite materials ; Ethanol ; Gas separation ; Imidazole ; Iron ; Membrane permeability ; Membranes ; metal-organic framework ; Metal-organic frameworks ; mixed matrix membranes ; MOF-polymer composite ; Nanocrystals ; Nitrates ; Performance tests ; Permeability ; Polymers ; Porous materials ; Research methodology ; Selectivity ; Upper bounds</subject><ispartof>Membranes (Basel), 2021-05, Vol.11 (6), p.404</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</citedby><cites>FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</cites><orcidid>0000-0001-9337-595X ; 0000-0002-1360-0828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544893972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544893972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Tang, Po-Hsiang</creatorcontrib><creatorcontrib>So, Pamela Berilyn</creatorcontrib><creatorcontrib>Li, Wa-Hua</creatorcontrib><creatorcontrib>Hui, Zi-You</creatorcontrib><creatorcontrib>Hu, Chien-Chieh</creatorcontrib><creatorcontrib>Lin, Chia-Her</creatorcontrib><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><title>Membranes (Basel)</title><description>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</description><subject>Aluminum</subject><subject>Carbon dioxide</subject><subject>carbon dioxide capture</subject><subject>Climate change</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Gas separation</subject><subject>Imidazole</subject><subject>Iron</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>metal-organic framework</subject><subject>Metal-organic frameworks</subject><subject>mixed matrix membranes</subject><subject>MOF-polymer composite</subject><subject>Nanocrystals</subject><subject>Nitrates</subject><subject>Performance tests</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Research methodology</subject><subject>Selectivity</subject><subject>Upper bounds</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtvEzEQxy0EolXaD8BtJS5cQm2P148LUllSiNQqlQCJm-XXto5218HeIPj2GBIh2s5lRjN__eaF0CuC3wIofDGG0WYzhUII5phh9gydUizEEoNon_8Xn6DzUra4GsctB_wSnQDDgrQgTtG6M9mmqfkQ08_oQ7OacnT3Y5jm5nb1_vLbxc3mqunSuEslzqG5OTZt-pSbbkObz2Fnspljms7Qi94MJZwf_QJ9vVp96T4trzcf193l9dIxjOelk44q7qlVVEkHnoNrrZOspRIk4VZSEqygIClznhBQEqxygWLuoTeMwQKtD1yfzFbvchxN_qWTifpvIuU7bfIc3RA07VXv217aNijGPDOs50JA4EJZL4yvrHcH1m5vx-BdXTub4QH0YWWK9_ou_dCSUokJVMCbIyCn7_tQZj3G4sIw1BulfdG0Bc64aBWp0tePpNu0z1M9VVUxJhWouvYCkYPK5VRKDv2_YQjWf_6un_wdfgNd8Z78</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Tang, Po-Hsiang</creator><creator>So, Pamela Berilyn</creator><creator>Li, Wa-Hua</creator><creator>Hui, Zi-You</creator><creator>Hu, Chien-Chieh</creator><creator>Lin, Chia-Her</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9337-595X</orcidid><orcidid>https://orcid.org/0000-0002-1360-0828</orcidid></search><sort><creationdate>20210528</creationdate><title>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</title><author>Tang, Po-Hsiang ; So, Pamela Berilyn ; Li, Wa-Hua ; Hui, Zi-You ; Hu, Chien-Chieh ; Lin, Chia-Her</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Carbon dioxide</topic><topic>carbon dioxide capture</topic><topic>Climate change</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Gas separation</topic><topic>Imidazole</topic><topic>Iron</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>metal-organic framework</topic><topic>Metal-organic frameworks</topic><topic>mixed matrix membranes</topic><topic>MOF-polymer composite</topic><topic>Nanocrystals</topic><topic>Nitrates</topic><topic>Performance tests</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Research methodology</topic><topic>Selectivity</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Po-Hsiang</creatorcontrib><creatorcontrib>So, Pamela Berilyn</creatorcontrib><creatorcontrib>Li, Wa-Hua</creatorcontrib><creatorcontrib>Hui, Zi-You</creatorcontrib><creatorcontrib>Hu, Chien-Chieh</creatorcontrib><creatorcontrib>Lin, Chia-Her</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Po-Hsiang</au><au>So, Pamela Berilyn</au><au>Li, Wa-Hua</au><au>Hui, Zi-You</au><au>Hu, Chien-Chieh</au><au>Lin, Chia-Her</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation</atitle><jtitle>Membranes (Basel)</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>404</spage><pages>404-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson’s Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34071537</pmid><doi>10.3390/membranes11060404</doi><orcidid>https://orcid.org/0000-0001-9337-595X</orcidid><orcidid>https://orcid.org/0000-0002-1360-0828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2021-05, Vol.11 (6), p.404
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2f9fd5f8b5e944d4a4f6773e679bd7ad
source Publicly Available Content Database; PubMed Central
subjects Aluminum
Carbon dioxide
carbon dioxide capture
Climate change
Composite materials
Ethanol
Gas separation
Imidazole
Iron
Membrane permeability
Membranes
metal-organic framework
Metal-organic frameworks
mixed matrix membranes
MOF-polymer composite
Nanocrystals
Nitrates
Performance tests
Permeability
Polymers
Porous materials
Research methodology
Selectivity
Upper bounds
title Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Enrichment%20PEBAX/MOF%20Composite%20Membrane%20for%20CO2%20Separation&rft.jtitle=Membranes%20(Basel)&rft.au=Tang,%20Po-Hsiang&rft.date=2021-05-28&rft.volume=11&rft.issue=6&rft.spage=404&rft.pages=404-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11060404&rft_dat=%3Cproquest_doaj_%3E2544893972%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-c8c296d2b9298c3d63c5bc845283816b821eb723824cd113983b9ce206d3fa443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544893972&rft_id=info:pmid/34071537&rfr_iscdi=true