Loading…

Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder

Clustering algorithms and deep learning methods have been widely applied in the multimode process monitoring. However, for the process data with unknown mode, traditional clustering methods can hardly identify the number of modes automatically. Further, deep learning methods can learn effective feat...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-07, Vol.10 (14), p.2526
Main Authors: Yu, Feng, Liu, Jianchang, Liu, Dongming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253
cites cdi_FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253
container_end_page
container_issue 14
container_start_page 2526
container_title Mathematics (Basel)
container_volume 10
creator Yu, Feng
Liu, Jianchang
Liu, Dongming
description Clustering algorithms and deep learning methods have been widely applied in the multimode process monitoring. However, for the process data with unknown mode, traditional clustering methods can hardly identify the number of modes automatically. Further, deep learning methods can learn effective features from nonlinear process data, while the extracted features cannot follow the Gaussian distribution, which may lead to incorrect control limit for fault detection. In this paper, a comprehensive monitoring method based on modified density peak clustering and parallel variational autoencoder (MDPC-PVAE) is proposed for multimode processes. Firstly, a novel clustering algorithm, named MDPC, is presented for the mode identification and division. MDPC can identify the number of modes without prior knowledge of mode information and divide the whole process data into multiple modes. Then, the PVAE is established based on distinguished multimode data to generate the deep nonlinear features, in which the generated features in each VAE follow the Gaussian distribution. Finally, the Gaussian feature representations obtained by PVAE are provided to construct the statistics H2, and the control limits are determined by the kernel density estimation (KDE) method. The effectiveness of the proposed method is evaluated by the Tennessee Eastman process and semiconductor etching process.
doi_str_mv 10.3390/math10142526
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fb6b7d7c80544f1b4d8e47ba999fb83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fb6b7d7c80544f1b4d8e47ba999fb83</doaj_id><sourcerecordid>2694059737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253</originalsourceid><addsrcrecordid>eNpNUbtuGzEQPBgOEMFxlw8gkDayj2-ydOSXAAtRkaQl9viwKZ-OCskr_PdhrCDQNruYHczsYrruM-6vKNX99R7qC-4xI5yIs25BCJFL2RbnJ_PH7rKUXd9KY6qYXnSvm3mscZ-cR9ucrC8FbdIUa8pxekbfoHiH0tQwF0Ns862fSqxvaOvhFa3GuVT_zoTJoS1kGEc_ol-QI9SYJhjRzVyTn2wzyJ-6DwHG4i__9Yvu5_3dj9Xj8un7w3p187S0RMu6pMwFobRgimJOw-A0tVpg2jPBSGNQBZJzq5zClAhFQTLLGdZecMID4fSiWx91XYKdOeS4h_xmEkTzDqT8bCDXaEdvSBjEIJ20queMBTwwpzyTA2itw6Bo0_py1Drk9Hv2pZpdmnN7rBgiNOt5u0c21tcjy-ZUSvbhvyvuzd90zGk69A-OdYEx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694059737</pqid></control><display><type>article</type><title>Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder</title><source>Publicly Available Content (ProQuest)</source><creator>Yu, Feng ; Liu, Jianchang ; Liu, Dongming</creator><creatorcontrib>Yu, Feng ; Liu, Jianchang ; Liu, Dongming</creatorcontrib><description>Clustering algorithms and deep learning methods have been widely applied in the multimode process monitoring. However, for the process data with unknown mode, traditional clustering methods can hardly identify the number of modes automatically. Further, deep learning methods can learn effective features from nonlinear process data, while the extracted features cannot follow the Gaussian distribution, which may lead to incorrect control limit for fault detection. In this paper, a comprehensive monitoring method based on modified density peak clustering and parallel variational autoencoder (MDPC-PVAE) is proposed for multimode processes. Firstly, a novel clustering algorithm, named MDPC, is presented for the mode identification and division. MDPC can identify the number of modes without prior knowledge of mode information and divide the whole process data into multiple modes. Then, the PVAE is established based on distinguished multimode data to generate the deep nonlinear features, in which the generated features in each VAE follow the Gaussian distribution. Finally, the Gaussian feature representations obtained by PVAE are provided to construct the statistics H2, and the control limits are determined by the kernel density estimation (KDE) method. The effectiveness of the proposed method is evaluated by the Tennessee Eastman process and semiconductor etching process.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10142526</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Clustering ; Control limits ; Data processing ; Deep learning ; Density ; density peak clustering ; Fault detection ; Fault diagnosis ; Feature extraction ; Food science ; kernel density estimation ; Machine learning ; Methods ; Monitoring ; multimode process ; Normal distribution ; Principal components analysis ; Tennessee Eastman process ; variational autoencoder</subject><ispartof>Mathematics (Basel), 2022-07, Vol.10 (14), p.2526</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253</citedby><cites>FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694059737/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694059737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Liu, Dongming</creatorcontrib><title>Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder</title><title>Mathematics (Basel)</title><description>Clustering algorithms and deep learning methods have been widely applied in the multimode process monitoring. However, for the process data with unknown mode, traditional clustering methods can hardly identify the number of modes automatically. Further, deep learning methods can learn effective features from nonlinear process data, while the extracted features cannot follow the Gaussian distribution, which may lead to incorrect control limit for fault detection. In this paper, a comprehensive monitoring method based on modified density peak clustering and parallel variational autoencoder (MDPC-PVAE) is proposed for multimode processes. Firstly, a novel clustering algorithm, named MDPC, is presented for the mode identification and division. MDPC can identify the number of modes without prior knowledge of mode information and divide the whole process data into multiple modes. Then, the PVAE is established based on distinguished multimode data to generate the deep nonlinear features, in which the generated features in each VAE follow the Gaussian distribution. Finally, the Gaussian feature representations obtained by PVAE are provided to construct the statistics H2, and the control limits are determined by the kernel density estimation (KDE) method. The effectiveness of the proposed method is evaluated by the Tennessee Eastman process and semiconductor etching process.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Control limits</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Density</subject><subject>density peak clustering</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Food science</subject><subject>kernel density estimation</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Monitoring</subject><subject>multimode process</subject><subject>Normal distribution</subject><subject>Principal components analysis</subject><subject>Tennessee Eastman process</subject><subject>variational autoencoder</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUbtuGzEQPBgOEMFxlw8gkDayj2-ydOSXAAtRkaQl9viwKZ-OCskr_PdhrCDQNruYHczsYrruM-6vKNX99R7qC-4xI5yIs25BCJFL2RbnJ_PH7rKUXd9KY6qYXnSvm3mscZ-cR9ucrC8FbdIUa8pxekbfoHiH0tQwF0Ns862fSqxvaOvhFa3GuVT_zoTJoS1kGEc_ol-QI9SYJhjRzVyTn2wzyJ-6DwHG4i__9Yvu5_3dj9Xj8un7w3p187S0RMu6pMwFobRgimJOw-A0tVpg2jPBSGNQBZJzq5zClAhFQTLLGdZecMID4fSiWx91XYKdOeS4h_xmEkTzDqT8bCDXaEdvSBjEIJ20queMBTwwpzyTA2itw6Bo0_py1Drk9Hv2pZpdmnN7rBgiNOt5u0c21tcjy-ZUSvbhvyvuzd90zGk69A-OdYEx</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yu, Feng</creator><creator>Liu, Jianchang</creator><creator>Liu, Dongming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20220701</creationdate><title>Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder</title><author>Yu, Feng ; Liu, Jianchang ; Liu, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Control limits</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Density</topic><topic>density peak clustering</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Food science</topic><topic>kernel density estimation</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Monitoring</topic><topic>multimode process</topic><topic>Normal distribution</topic><topic>Principal components analysis</topic><topic>Tennessee Eastman process</topic><topic>variational autoencoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Liu, Dongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Feng</au><au>Liu, Jianchang</au><au>Liu, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>10</volume><issue>14</issue><spage>2526</spage><pages>2526-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Clustering algorithms and deep learning methods have been widely applied in the multimode process monitoring. However, for the process data with unknown mode, traditional clustering methods can hardly identify the number of modes automatically. Further, deep learning methods can learn effective features from nonlinear process data, while the extracted features cannot follow the Gaussian distribution, which may lead to incorrect control limit for fault detection. In this paper, a comprehensive monitoring method based on modified density peak clustering and parallel variational autoencoder (MDPC-PVAE) is proposed for multimode processes. Firstly, a novel clustering algorithm, named MDPC, is presented for the mode identification and division. MDPC can identify the number of modes without prior knowledge of mode information and divide the whole process data into multiple modes. Then, the PVAE is established based on distinguished multimode data to generate the deep nonlinear features, in which the generated features in each VAE follow the Gaussian distribution. Finally, the Gaussian feature representations obtained by PVAE are provided to construct the statistics H2, and the control limits are determined by the kernel density estimation (KDE) method. The effectiveness of the proposed method is evaluated by the Tennessee Eastman process and semiconductor etching process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10142526</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-07, Vol.10 (14), p.2526
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fb6b7d7c80544f1b4d8e47ba999fb83
source Publicly Available Content (ProQuest)
subjects Algorithms
Clustering
Control limits
Data processing
Deep learning
Density
density peak clustering
Fault detection
Fault diagnosis
Feature extraction
Food science
kernel density estimation
Machine learning
Methods
Monitoring
multimode process
Normal distribution
Principal components analysis
Tennessee Eastman process
variational autoencoder
title Multimode Process Monitoring Based on Modified Density Peak Clustering and Parallel Variational Autoencoder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T09%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimode%20Process%20Monitoring%20Based%20on%20Modified%20Density%20Peak%20Clustering%20and%20Parallel%20Variational%20Autoencoder&rft.jtitle=Mathematics%20(Basel)&rft.au=Yu,%20Feng&rft.date=2022-07-01&rft.volume=10&rft.issue=14&rft.spage=2526&rft.pages=2526-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10142526&rft_dat=%3Cproquest_doaj_%3E2694059737%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-34df6896483153fbd93c96130464229738a755c8d8132683a74c5419e6525f253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694059737&rft_id=info:pmid/&rfr_iscdi=true