Loading…

Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology

The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (21), p.8767
Main Authors: Xue, Zhengkun, Huang, Yukun, Zhang, Wanyang, Shi, Jinchuan, Luo, Huageng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3
cites cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3
container_end_page
container_issue 21
container_start_page 8767
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Xue, Zhengkun
Huang, Yukun
Zhang, Wanyang
Shi, Jinchuan
Luo, Huageng
description The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.
doi_str_mv 10.3390/s23218767
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772536084</galeid><doaj_id>oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763</doaj_id><sourcerecordid>A772536084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</originalsourceid><addsrcrecordid>eNpdUsFuEzEQXSGQKIEDf2CJCxxSvB7v2j62oWkjFSEVOK-89nhxtLGD7UjkM_hjHAIVQj6MZ957Y83zNM3rll4CKPo-M2CtFL140ly0nPGlZIw-_ef-vHmR85ZSBgDyovm5CQXn2U8YClnrw1zIB6-nELPPJDryECsYJnKNOtWYybXOaEkMRJNV3O1nLEjWCb8fMJgjedBhqjnqckhIbn6UpE3xJ3awJ_7oQ1X_xT_jjGf4I5Zv0cY5TseXzTOn54yv_sRF83V982V1t7z_dLtZXd0vDSgoS8XRcdV1I7eALROKW8MkaNN2UMsgrGOdoyMT2DGqOcI4jlYr6UxnrdawaDbnvjbq7bBPfqfTcYjaD78LMU2DTsWbGQfmRgmUK0ORcieMlL3oreuVcAZED7XX23OvfYrViVyGnc-m-qoDxkMemJRKKd7RtlLf_EfdxkMKddITS0KveP2bRXN5Zk26vu-Diycn67G48yYGdL7Wr4RgHfRU8ip4dxaYFHNO6B4naulw2ozhcTPgF5N8q1o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888369402</pqid></control><display><type>article</type><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</creator><creatorcontrib>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</creatorcontrib><description>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23218767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Bearings ; Entropy ; Fault diagnosis ; feature extraction ; Feature selection ; fuzzy dispersion entropy ; Methods ; Numerical analysis ; rolling bearing fault diagnosis ; Simulation methods ; Time series</subject><ispartof>Sensors (Basel, Switzerland), 2023-10, Vol.23 (21), p.8767</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</citedby><cites>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</cites><orcidid>0000-0001-6162-9193 ; 0000-0001-9526-4524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888369402/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888369402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Xue, Zhengkun</creatorcontrib><creatorcontrib>Huang, Yukun</creatorcontrib><creatorcontrib>Zhang, Wanyang</creatorcontrib><creatorcontrib>Shi, Jinchuan</creatorcontrib><creatorcontrib>Luo, Huageng</creatorcontrib><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><title>Sensors (Basel, Switzerland)</title><description>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bearings</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>feature extraction</subject><subject>Feature selection</subject><subject>fuzzy dispersion entropy</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>rolling bearing fault diagnosis</subject><subject>Simulation methods</subject><subject>Time series</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFuEzEQXSGQKIEDf2CJCxxSvB7v2j62oWkjFSEVOK-89nhxtLGD7UjkM_hjHAIVQj6MZ957Y83zNM3rll4CKPo-M2CtFL140ly0nPGlZIw-_ef-vHmR85ZSBgDyovm5CQXn2U8YClnrw1zIB6-nELPPJDryECsYJnKNOtWYybXOaEkMRJNV3O1nLEjWCb8fMJgjedBhqjnqckhIbn6UpE3xJ3awJ_7oQ1X_xT_jjGf4I5Zv0cY5TseXzTOn54yv_sRF83V982V1t7z_dLtZXd0vDSgoS8XRcdV1I7eALROKW8MkaNN2UMsgrGOdoyMT2DGqOcI4jlYr6UxnrdawaDbnvjbq7bBPfqfTcYjaD78LMU2DTsWbGQfmRgmUK0ORcieMlL3oreuVcAZED7XX23OvfYrViVyGnc-m-qoDxkMemJRKKd7RtlLf_EfdxkMKddITS0KveP2bRXN5Zk26vu-Diycn67G48yYGdL7Wr4RgHfRU8ip4dxaYFHNO6B4naulw2ozhcTPgF5N8q1o</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Xue, Zhengkun</creator><creator>Huang, Yukun</creator><creator>Zhang, Wanyang</creator><creator>Shi, Jinchuan</creator><creator>Luo, Huageng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6162-9193</orcidid><orcidid>https://orcid.org/0000-0001-9526-4524</orcidid></search><sort><creationdate>20231027</creationdate><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><author>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bearings</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>feature extraction</topic><topic>Feature selection</topic><topic>fuzzy dispersion entropy</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>rolling bearing fault diagnosis</topic><topic>Simulation methods</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhengkun</creatorcontrib><creatorcontrib>Huang, Yukun</creatorcontrib><creatorcontrib>Zhang, Wanyang</creatorcontrib><creatorcontrib>Shi, Jinchuan</creatorcontrib><creatorcontrib>Luo, Huageng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhengkun</au><au>Huang, Yukun</au><au>Zhang, Wanyang</au><au>Shi, Jinchuan</au><au>Luo, Huageng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-10-27</date><risdate>2023</risdate><volume>23</volume><issue>21</issue><spage>8767</spage><pages>8767-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s23218767</doi><orcidid>https://orcid.org/0000-0001-6162-9193</orcidid><orcidid>https://orcid.org/0000-0001-9526-4524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-10, Vol.23 (21), p.8767
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Algorithms
Analysis
Bearings
Entropy
Fault diagnosis
feature extraction
Feature selection
fuzzy dispersion entropy
Methods
Numerical analysis
rolling bearing fault diagnosis
Simulation methods
Time series
title Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault%20Diagnosis%20of%20Rolling%20Bearings%20Based%20on%20a%20Complete%20Frequency%20Range%20Feature%20Extraction%20and%20Combined%20Feature%20Selection%20Methodology&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xue,%20Zhengkun&rft.date=2023-10-27&rft.volume=23&rft.issue=21&rft.spage=8767&rft.pages=8767-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23218767&rft_dat=%3Cgale_doaj_%3EA772536084%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888369402&rft_id=info:pmid/&rft_galeid=A772536084&rfr_iscdi=true