Loading…
Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology
The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (21), p.8767 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3 |
container_end_page | |
container_issue | 21 |
container_start_page | 8767 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Xue, Zhengkun Huang, Yukun Zhang, Wanyang Shi, Jinchuan Luo, Huageng |
description | The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery. |
doi_str_mv | 10.3390/s23218767 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772536084</galeid><doaj_id>oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763</doaj_id><sourcerecordid>A772536084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</originalsourceid><addsrcrecordid>eNpdUsFuEzEQXSGQKIEDf2CJCxxSvB7v2j62oWkjFSEVOK-89nhxtLGD7UjkM_hjHAIVQj6MZ957Y83zNM3rll4CKPo-M2CtFL140ly0nPGlZIw-_ef-vHmR85ZSBgDyovm5CQXn2U8YClnrw1zIB6-nELPPJDryECsYJnKNOtWYybXOaEkMRJNV3O1nLEjWCb8fMJgjedBhqjnqckhIbn6UpE3xJ3awJ_7oQ1X_xT_jjGf4I5Zv0cY5TseXzTOn54yv_sRF83V982V1t7z_dLtZXd0vDSgoS8XRcdV1I7eALROKW8MkaNN2UMsgrGOdoyMT2DGqOcI4jlYr6UxnrdawaDbnvjbq7bBPfqfTcYjaD78LMU2DTsWbGQfmRgmUK0ORcieMlL3oreuVcAZED7XX23OvfYrViVyGnc-m-qoDxkMemJRKKd7RtlLf_EfdxkMKddITS0KveP2bRXN5Zk26vu-Diycn67G48yYGdL7Wr4RgHfRU8ip4dxaYFHNO6B4naulw2ozhcTPgF5N8q1o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888369402</pqid></control><display><type>article</type><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</creator><creatorcontrib>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</creatorcontrib><description>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23218767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Bearings ; Entropy ; Fault diagnosis ; feature extraction ; Feature selection ; fuzzy dispersion entropy ; Methods ; Numerical analysis ; rolling bearing fault diagnosis ; Simulation methods ; Time series</subject><ispartof>Sensors (Basel, Switzerland), 2023-10, Vol.23 (21), p.8767</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</citedby><cites>FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</cites><orcidid>0000-0001-6162-9193 ; 0000-0001-9526-4524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888369402/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888369402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Xue, Zhengkun</creatorcontrib><creatorcontrib>Huang, Yukun</creatorcontrib><creatorcontrib>Zhang, Wanyang</creatorcontrib><creatorcontrib>Shi, Jinchuan</creatorcontrib><creatorcontrib>Luo, Huageng</creatorcontrib><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><title>Sensors (Basel, Switzerland)</title><description>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bearings</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>feature extraction</subject><subject>Feature selection</subject><subject>fuzzy dispersion entropy</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>rolling bearing fault diagnosis</subject><subject>Simulation methods</subject><subject>Time series</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFuEzEQXSGQKIEDf2CJCxxSvB7v2j62oWkjFSEVOK-89nhxtLGD7UjkM_hjHAIVQj6MZ957Y83zNM3rll4CKPo-M2CtFL140ly0nPGlZIw-_ef-vHmR85ZSBgDyovm5CQXn2U8YClnrw1zIB6-nELPPJDryECsYJnKNOtWYybXOaEkMRJNV3O1nLEjWCb8fMJgjedBhqjnqckhIbn6UpE3xJ3awJ_7oQ1X_xT_jjGf4I5Zv0cY5TseXzTOn54yv_sRF83V982V1t7z_dLtZXd0vDSgoS8XRcdV1I7eALROKW8MkaNN2UMsgrGOdoyMT2DGqOcI4jlYr6UxnrdawaDbnvjbq7bBPfqfTcYjaD78LMU2DTsWbGQfmRgmUK0ORcieMlL3oreuVcAZED7XX23OvfYrViVyGnc-m-qoDxkMemJRKKd7RtlLf_EfdxkMKddITS0KveP2bRXN5Zk26vu-Diycn67G48yYGdL7Wr4RgHfRU8ip4dxaYFHNO6B4naulw2ozhcTPgF5N8q1o</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Xue, Zhengkun</creator><creator>Huang, Yukun</creator><creator>Zhang, Wanyang</creator><creator>Shi, Jinchuan</creator><creator>Luo, Huageng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6162-9193</orcidid><orcidid>https://orcid.org/0000-0001-9526-4524</orcidid></search><sort><creationdate>20231027</creationdate><title>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</title><author>Xue, Zhengkun ; Huang, Yukun ; Zhang, Wanyang ; Shi, Jinchuan ; Luo, Huageng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bearings</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>feature extraction</topic><topic>Feature selection</topic><topic>fuzzy dispersion entropy</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>rolling bearing fault diagnosis</topic><topic>Simulation methods</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhengkun</creatorcontrib><creatorcontrib>Huang, Yukun</creatorcontrib><creatorcontrib>Zhang, Wanyang</creatorcontrib><creatorcontrib>Shi, Jinchuan</creatorcontrib><creatorcontrib>Luo, Huageng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhengkun</au><au>Huang, Yukun</au><au>Zhang, Wanyang</au><au>Shi, Jinchuan</au><au>Luo, Huageng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2023-10-27</date><risdate>2023</risdate><volume>23</volume><issue>21</issue><spage>8767</spage><pages>8767-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The utilization of multiscale entropy methods to characterize vibration signals has proven to be promising in intelligent diagnosis of mechanical equipment. However, in the current multiscale entropy methods, only the information in the low-frequency range is utilized and the information in the high-frequency range is discarded. In order to take full advantage of the information, in this paper, a fault feature extraction method utilizing the bidirectional composite coarse-graining process with fuzzy dispersion entropy is proposed. To avoid the redundancy of the full frequency range feature information, the Random Forest algorithm combined with the Maximum Relevance Minimum Redundancy algorithm is applied to feature selection. Together with the K-nearest neighbor classifier, a rolling bearing intelligent diagnosis framework is constructed. The effectiveness of the proposed framework is evaluated by a numerical simulation and two experimental examples. The validation results demonstrate that the extracted features by the proposed method are highly sensitive to the bearing health conditions compared with hierarchical fuzzy dispersion entropy, composite multiscale fuzzy dispersion entropy, multiscale fuzzy dispersion entropy, multiscale dispersion entropy, multiscale permutation entropy, and multiscale sample entropy. In addition, the proposed method is able to identify the fault categories and health states of rolling bearings simultaneously. The proposed damage detection methodology provides a new and better framework for intelligent fault diagnosis of rolling bearings in rotating machinery.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s23218767</doi><orcidid>https://orcid.org/0000-0001-6162-9193</orcidid><orcidid>https://orcid.org/0000-0001-9526-4524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-10, Vol.23 (21), p.8767 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2fb83049c0e04f7c88676df697fc3763 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Algorithms Analysis Bearings Entropy Fault diagnosis feature extraction Feature selection fuzzy dispersion entropy Methods Numerical analysis rolling bearing fault diagnosis Simulation methods Time series |
title | Intelligent Fault Diagnosis of Rolling Bearings Based on a Complete Frequency Range Feature Extraction and Combined Feature Selection Methodology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Fault%20Diagnosis%20of%20Rolling%20Bearings%20Based%20on%20a%20Complete%20Frequency%20Range%20Feature%20Extraction%20and%20Combined%20Feature%20Selection%20Methodology&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xue,%20Zhengkun&rft.date=2023-10-27&rft.volume=23&rft.issue=21&rft.spage=8767&rft.pages=8767-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23218767&rft_dat=%3Cgale_doaj_%3EA772536084%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-94ef4955b4d3e12794dc283ac15395537df25f0b27e520a4e3bbbda98fc5ddaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888369402&rft_id=info:pmid/&rft_galeid=A772536084&rfr_iscdi=true |