Loading…
Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech
This study had two goals: to clarify the relationship between electroencephalographic (EEG) features estimated while non-native speakers listened to a second language (L2) and their proficiency in L2 determined by a conventional paper test and to provide a predictive model for L2 proficiency based o...
Saved in:
Published in: | Frontiers in human neuroscience 2021-07, Vol.15, p.665809-665809 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543 |
---|---|
cites | cdi_FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543 |
container_end_page | 665809 |
container_issue | |
container_start_page | 665809 |
container_title | Frontiers in human neuroscience |
container_volume | 15 |
creator | Ihara, Aya S. Matsumoto, Atsushi Ojima, Shiro Katayama, Jun’ichi Nakamura, Keita Yokota, Yusuke Watanabe, Hiroki Naruse, Yasushi |
description | This study had two goals: to clarify the relationship between electroencephalographic (EEG) features estimated while non-native speakers listened to a second language (L2) and their proficiency in L2 determined by a conventional paper test and to provide a predictive model for L2 proficiency based on EEG features. We measured EEG signals from 205 native Japanese speakers, who varied widely in English proficiency while they listened to natural speech in English. Following the EEG measurement, they completed a conventional English listening test for Japanese speakers. We estimated multivariate temporal response functions separately for word class, speech rate, word position, and parts of speech. We found significant negative correlations between listening score and 17 EEG features, which included peak latency of early components (corresponding to N1 and P2) for both open and closed class words and peak latency and amplitude of a late component (corresponding to N400) for open class words. On the basis of the EEG features, we generated a predictive model for Japanese speakers’ English listening proficiency. The correlation coefficient between the true and predicted listening scores was 0.51. Our results suggest that L2 or foreign language ability can be assessed using neural signatures measured while listening to natural speech, without the need of a conventional paper test. |
doi_str_mv | 10.3389/fnhum.2021.665809 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fc9eaec1ecb40de85a229d8a0b5bffd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fc9eaec1ecb40de85a229d8a0b5bffd</doaj_id><sourcerecordid>2557537782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543</originalsourceid><addsrcrecordid>eNpdkktv1DAURiMEoqXwA9hZYsNmBj_iRzZIUBWoNEClAbG0_LhJPMrYwU6QuuC_k3QqRFnZvj4-utf6quolwVvGVPOmjf183FJMyVYIrnDzqDonQtANJ4I8_md_Vj0r5YCxoIKTp9UZqxnjFKvz6vdNBh_cFFJEqUV7cCl6tDOxm00H6CanNrgA0d2i96aARwt3NYCbclqKMPZmSF02Yx8c2ocumqGgz2DKvGjRjz4MgHahTBBD7NCU0BczzdkMaD8CuP559aRdXsCL-_Wi-v7h6tvlp83u68fry3e7jeNMTBtDOHfWEl5jKzBxbjnKWnlphQLfUilUza2vofWK2IbJ2kkKEri0BCiv2UV1ffL6ZA56zOFo8q1OJui7QsqdNnkKbgBNW9eAAUfA2Rp7UNxQ2nhlsOW2bf3ientyjbM9gncQp2WgB9KHNzH0uku_tGKU1rVcBK_vBTn9nKFM-hiKg2EwEdJcNOVccialogv66j_0kOa8fvJKUaKIYut05ES5nErJ0P5thmC9BkXfBUWvQdGnoLA_C3Oz1A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552181834</pqid></control><display><type>article</type><title>Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Ihara, Aya S. ; Matsumoto, Atsushi ; Ojima, Shiro ; Katayama, Jun’ichi ; Nakamura, Keita ; Yokota, Yusuke ; Watanabe, Hiroki ; Naruse, Yasushi</creator><creatorcontrib>Ihara, Aya S. ; Matsumoto, Atsushi ; Ojima, Shiro ; Katayama, Jun’ichi ; Nakamura, Keita ; Yokota, Yusuke ; Watanabe, Hiroki ; Naruse, Yasushi</creatorcontrib><description>This study had two goals: to clarify the relationship between electroencephalographic (EEG) features estimated while non-native speakers listened to a second language (L2) and their proficiency in L2 determined by a conventional paper test and to provide a predictive model for L2 proficiency based on EEG features. We measured EEG signals from 205 native Japanese speakers, who varied widely in English proficiency while they listened to natural speech in English. Following the EEG measurement, they completed a conventional English listening test for Japanese speakers. We estimated multivariate temporal response functions separately for word class, speech rate, word position, and parts of speech. We found significant negative correlations between listening score and 17 EEG features, which included peak latency of early components (corresponding to N1 and P2) for both open and closed class words and peak latency and amplitude of a late component (corresponding to N400) for open class words. On the basis of the EEG features, we generated a predictive model for Japanese speakers’ English listening proficiency. The correlation coefficient between the true and predicted listening scores was 0.51. Our results suggest that L2 or foreign language ability can be assessed using neural signatures measured while listening to natural speech, without the need of a conventional paper test.</description><identifier>ISSN: 1662-5161</identifier><identifier>EISSN: 1662-5161</identifier><identifier>DOI: 10.3389/fnhum.2021.665809</identifier><identifier>PMID: 34335208</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Brain research ; Education ; EEG ; English proficiency ; Event-related potentials ; foreign language ; Foreign language learning ; Form classes ; Japanese language ; Language ; language proficiency ; Latency ; Listening ; Listening comprehension ; Medical imaging ; multivariate temporal response function ; Neuroscience ; Order processing ; Prediction models ; second language ; Semantics ; Speech ; Speech rate ; Validity</subject><ispartof>Frontiers in human neuroscience, 2021-07, Vol.15, p.665809-665809</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Ihara, Matsumoto, Ojima, Katayama, Nakamura, Yokota, Watanabe and Naruse. 2021 Ihara, Matsumoto, Ojima, Katayama, Nakamura, Yokota, Watanabe and Naruse</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543</citedby><cites>FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2552181834/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552181834?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,12851,25753,27924,27925,31269,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ihara, Aya S.</creatorcontrib><creatorcontrib>Matsumoto, Atsushi</creatorcontrib><creatorcontrib>Ojima, Shiro</creatorcontrib><creatorcontrib>Katayama, Jun’ichi</creatorcontrib><creatorcontrib>Nakamura, Keita</creatorcontrib><creatorcontrib>Yokota, Yusuke</creatorcontrib><creatorcontrib>Watanabe, Hiroki</creatorcontrib><creatorcontrib>Naruse, Yasushi</creatorcontrib><title>Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech</title><title>Frontiers in human neuroscience</title><description>This study had two goals: to clarify the relationship between electroencephalographic (EEG) features estimated while non-native speakers listened to a second language (L2) and their proficiency in L2 determined by a conventional paper test and to provide a predictive model for L2 proficiency based on EEG features. We measured EEG signals from 205 native Japanese speakers, who varied widely in English proficiency while they listened to natural speech in English. Following the EEG measurement, they completed a conventional English listening test for Japanese speakers. We estimated multivariate temporal response functions separately for word class, speech rate, word position, and parts of speech. We found significant negative correlations between listening score and 17 EEG features, which included peak latency of early components (corresponding to N1 and P2) for both open and closed class words and peak latency and amplitude of a late component (corresponding to N400) for open class words. On the basis of the EEG features, we generated a predictive model for Japanese speakers’ English listening proficiency. The correlation coefficient between the true and predicted listening scores was 0.51. Our results suggest that L2 or foreign language ability can be assessed using neural signatures measured while listening to natural speech, without the need of a conventional paper test.</description><subject>Brain research</subject><subject>Education</subject><subject>EEG</subject><subject>English proficiency</subject><subject>Event-related potentials</subject><subject>foreign language</subject><subject>Foreign language learning</subject><subject>Form classes</subject><subject>Japanese language</subject><subject>Language</subject><subject>language proficiency</subject><subject>Latency</subject><subject>Listening</subject><subject>Listening comprehension</subject><subject>Medical imaging</subject><subject>multivariate temporal response function</subject><subject>Neuroscience</subject><subject>Order processing</subject><subject>Prediction models</subject><subject>second language</subject><subject>Semantics</subject><subject>Speech</subject><subject>Speech rate</subject><subject>Validity</subject><issn>1662-5161</issn><issn>1662-5161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURiMEoqXwA9hZYsNmBj_iRzZIUBWoNEClAbG0_LhJPMrYwU6QuuC_k3QqRFnZvj4-utf6quolwVvGVPOmjf183FJMyVYIrnDzqDonQtANJ4I8_md_Vj0r5YCxoIKTp9UZqxnjFKvz6vdNBh_cFFJEqUV7cCl6tDOxm00H6CanNrgA0d2i96aARwt3NYCbclqKMPZmSF02Yx8c2ocumqGgz2DKvGjRjz4MgHahTBBD7NCU0BczzdkMaD8CuP559aRdXsCL-_Wi-v7h6tvlp83u68fry3e7jeNMTBtDOHfWEl5jKzBxbjnKWnlphQLfUilUza2vofWK2IbJ2kkKEri0BCiv2UV1ffL6ZA56zOFo8q1OJui7QsqdNnkKbgBNW9eAAUfA2Rp7UNxQ2nhlsOW2bf3ientyjbM9gncQp2WgB9KHNzH0uku_tGKU1rVcBK_vBTn9nKFM-hiKg2EwEdJcNOVccialogv66j_0kOa8fvJKUaKIYut05ES5nErJ0P5thmC9BkXfBUWvQdGnoLA_C3Oz1A</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>Ihara, Aya S.</creator><creator>Matsumoto, Atsushi</creator><creator>Ojima, Shiro</creator><creator>Katayama, Jun’ichi</creator><creator>Nakamura, Keita</creator><creator>Yokota, Yusuke</creator><creator>Watanabe, Hiroki</creator><creator>Naruse, Yasushi</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T9</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210716</creationdate><title>Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech</title><author>Ihara, Aya S. ; Matsumoto, Atsushi ; Ojima, Shiro ; Katayama, Jun’ichi ; Nakamura, Keita ; Yokota, Yusuke ; Watanabe, Hiroki ; Naruse, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain research</topic><topic>Education</topic><topic>EEG</topic><topic>English proficiency</topic><topic>Event-related potentials</topic><topic>foreign language</topic><topic>Foreign language learning</topic><topic>Form classes</topic><topic>Japanese language</topic><topic>Language</topic><topic>language proficiency</topic><topic>Latency</topic><topic>Listening</topic><topic>Listening comprehension</topic><topic>Medical imaging</topic><topic>multivariate temporal response function</topic><topic>Neuroscience</topic><topic>Order processing</topic><topic>Prediction models</topic><topic>second language</topic><topic>Semantics</topic><topic>Speech</topic><topic>Speech rate</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ihara, Aya S.</creatorcontrib><creatorcontrib>Matsumoto, Atsushi</creatorcontrib><creatorcontrib>Ojima, Shiro</creatorcontrib><creatorcontrib>Katayama, Jun’ichi</creatorcontrib><creatorcontrib>Nakamura, Keita</creatorcontrib><creatorcontrib>Yokota, Yusuke</creatorcontrib><creatorcontrib>Watanabe, Hiroki</creatorcontrib><creatorcontrib>Naruse, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in human neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ihara, Aya S.</au><au>Matsumoto, Atsushi</au><au>Ojima, Shiro</au><au>Katayama, Jun’ichi</au><au>Nakamura, Keita</au><au>Yokota, Yusuke</au><au>Watanabe, Hiroki</au><au>Naruse, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech</atitle><jtitle>Frontiers in human neuroscience</jtitle><date>2021-07-16</date><risdate>2021</risdate><volume>15</volume><spage>665809</spage><epage>665809</epage><pages>665809-665809</pages><issn>1662-5161</issn><eissn>1662-5161</eissn><abstract>This study had two goals: to clarify the relationship between electroencephalographic (EEG) features estimated while non-native speakers listened to a second language (L2) and their proficiency in L2 determined by a conventional paper test and to provide a predictive model for L2 proficiency based on EEG features. We measured EEG signals from 205 native Japanese speakers, who varied widely in English proficiency while they listened to natural speech in English. Following the EEG measurement, they completed a conventional English listening test for Japanese speakers. We estimated multivariate temporal response functions separately for word class, speech rate, word position, and parts of speech. We found significant negative correlations between listening score and 17 EEG features, which included peak latency of early components (corresponding to N1 and P2) for both open and closed class words and peak latency and amplitude of a late component (corresponding to N400) for open class words. On the basis of the EEG features, we generated a predictive model for Japanese speakers’ English listening proficiency. The correlation coefficient between the true and predicted listening scores was 0.51. Our results suggest that L2 or foreign language ability can be assessed using neural signatures measured while listening to natural speech, without the need of a conventional paper test.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><pmid>34335208</pmid><doi>10.3389/fnhum.2021.665809</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5161 |
ispartof | Frontiers in human neuroscience, 2021-07, Vol.15, p.665809-665809 |
issn | 1662-5161 1662-5161 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2fc9eaec1ecb40de85a229d8a0b5bffd |
source | PubMed Central Free; Publicly Available Content Database; Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Brain research Education EEG English proficiency Event-related potentials foreign language Foreign language learning Form classes Japanese language Language language proficiency Latency Listening Listening comprehension Medical imaging multivariate temporal response function Neuroscience Order processing Prediction models second language Semantics Speech Speech rate Validity |
title | Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Second%20Language%20Proficiency%20Based%20on%20Electroencephalographic%20Signals%20Measured%20While%20Listening%20to%20Natural%20Speech&rft.jtitle=Frontiers%20in%20human%20neuroscience&rft.au=Ihara,%20Aya%20S.&rft.date=2021-07-16&rft.volume=15&rft.spage=665809&rft.epage=665809&rft.pages=665809-665809&rft.issn=1662-5161&rft.eissn=1662-5161&rft_id=info:doi/10.3389/fnhum.2021.665809&rft_dat=%3Cproquest_doaj_%3E2557537782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-a155cbb1540b601cc55c748d7b68edf276845bd4efd81b9374c72e7e57b1e2543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552181834&rft_id=info:pmid/34335208&rfr_iscdi=true |