Loading…

A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery

The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and peri...

Full description

Saved in:
Bibliographic Details
Published in:Molecular metabolism (Germany) 2022-12, Vol.66, p.101631-101631, Article 101631
Main Authors: Zheng, Huiyuan, López-Ferreras, Lorena, Krieger, Jean-Phillipe, Fasul, Stephen, Cea Salazar, Valentina, Valderrama Pena, Natalia, Skibicka, Karolina P., Rinaman, Linda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93
cites cdi_FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93
container_end_page 101631
container_issue
container_start_page 101631
container_title Molecular metabolism (Germany)
container_volume 66
creator Zheng, Huiyuan
López-Ferreras, Lorena
Krieger, Jean-Phillipe
Fasul, Stephen
Cea Salazar, Valentina
Valderrama Pena, Natalia
Skibicka, Karolina P.
Rinaman, Linda
description The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism. •A transgenic Gcg-Cre rat model expresses iCre under control of the Gcg promoter.•iCre is expressed by GLP1-positive cells in the hindbrain, pancreas, and intestine.•Additional brain regions display transient and/or very low levels of Gcg expression.•+/+ Gcg-Cre rats display a marked knockdown of Gcg mRNA and GLP1 protein.•Chemogenetic activation of Gcg neurons suppresses food intake i
doi_str_mv 10.1016/j.molmet.2022.101631
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fced1e4a7f74f4fa81a230ba7cdfe8e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212877822002009</els_id><doaj_id>oai_doaj_org_article_2fced1e4a7f74f4fa81a230ba7cdfe8e</doaj_id><sourcerecordid>2735877683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqX_ACEfyyFL_BHbuSBVKyiVKnGBszXrTLJeJXGwk4UVfx7vppTuBV88Hr_3xjN-WfaWFitaUPlht-p91-O0YgVjpxSnL7JLxijLtVL65bP4IruOcVekpaWUJX2dXXDJpZaMXWa_b8k6YF4Ht8dAAkyk9zV2pPGBwACT752FLoU1aebBTs4PpyN0h-gi8Q1pu9lC6wdyc2fb9zn-GgPG6IaWWOy6SNxApi2STYAUHXVGDG7cYji8yV410EW8ftyvsu-fP31bf8kfvt7dr28fcltKNeW8KFDQWmCldFmVhaUI0FAJWlhON7oSvNBUMqWl4KIEYFqA4KWupNCqrvhVdr_o1h52Zgyuh3AwHpw5JXxoDYTJ2Q4NayzWFAWoRolGNKApMF5sQNm6QY1JK1-04k8c582ZWjuPJqXa2UQ0nHHJaMJ_XPAJ3GNtcZgCdGe085vBbU3r96aSSjHGksDNo0DwP2aMk-ldPE4WBvRzNEylTpWSmieoWKA2-BgDNk9laGGOHjE7s9jGHG1jFtsk2rvnT3wi_TXJvx4wfdLeYTDROhzSpFxAO6Upuv9X-AO1pNbu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735877683</pqid></control><display><type>article</type><title>A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery</title><source>PubMed (Medline)</source><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Huiyuan ; López-Ferreras, Lorena ; Krieger, Jean-Phillipe ; Fasul, Stephen ; Cea Salazar, Valentina ; Valderrama Pena, Natalia ; Skibicka, Karolina P. ; Rinaman, Linda</creator><creatorcontrib>Zheng, Huiyuan ; López-Ferreras, Lorena ; Krieger, Jean-Phillipe ; Fasul, Stephen ; Cea Salazar, Valentina ; Valderrama Pena, Natalia ; Skibicka, Karolina P. ; Rinaman, Linda</creatorcontrib><description>The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism. •A transgenic Gcg-Cre rat model expresses iCre under control of the Gcg promoter.•iCre is expressed by GLP1-positive cells in the hindbrain, pancreas, and intestine.•Additional brain regions display transient and/or very low levels of Gcg expression.•+/+ Gcg-Cre rats display a marked knockdown of Gcg mRNA and GLP1 protein.•Chemogenetic activation of Gcg neurons suppresses food intake in +/− Gcg-Cre rats.</description><identifier>ISSN: 2212-8778</identifier><identifier>EISSN: 2212-8778</identifier><identifier>DOI: 10.1016/j.molmet.2022.101631</identifier><identifier>PMID: 36368622</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Animals ; Brain ; Food intake ; Glucagon - metabolism ; Glucagon-like peptide 1 ; Glucagon-Like Peptide 1 - genetics ; Glucagon-Like Peptide 1 - metabolism ; Glucagon-Secreting Cells - metabolism ; Intestine ; Male ; Neurosciences ; Neurovetenskaper ; Original ; Pancreas ; Rats ; RNA, Messenger - metabolism ; Solitary Nucleus - metabolism</subject><ispartof>Molecular metabolism (Germany), 2022-12, Vol.66, p.101631-101631, Article 101631</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93</citedby><cites>FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93</cites><orcidid>0000-0001-5999-8811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2212877822002009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36368622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/323621$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Huiyuan</creatorcontrib><creatorcontrib>López-Ferreras, Lorena</creatorcontrib><creatorcontrib>Krieger, Jean-Phillipe</creatorcontrib><creatorcontrib>Fasul, Stephen</creatorcontrib><creatorcontrib>Cea Salazar, Valentina</creatorcontrib><creatorcontrib>Valderrama Pena, Natalia</creatorcontrib><creatorcontrib>Skibicka, Karolina P.</creatorcontrib><creatorcontrib>Rinaman, Linda</creatorcontrib><title>A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery</title><title>Molecular metabolism (Germany)</title><addtitle>Mol Metab</addtitle><description>The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism. •A transgenic Gcg-Cre rat model expresses iCre under control of the Gcg promoter.•iCre is expressed by GLP1-positive cells in the hindbrain, pancreas, and intestine.•Additional brain regions display transient and/or very low levels of Gcg expression.•+/+ Gcg-Cre rats display a marked knockdown of Gcg mRNA and GLP1 protein.•Chemogenetic activation of Gcg neurons suppresses food intake in +/− Gcg-Cre rats.</description><subject>Animals</subject><subject>Brain</subject><subject>Food intake</subject><subject>Glucagon - metabolism</subject><subject>Glucagon-like peptide 1</subject><subject>Glucagon-Like Peptide 1 - genetics</subject><subject>Glucagon-Like Peptide 1 - metabolism</subject><subject>Glucagon-Secreting Cells - metabolism</subject><subject>Intestine</subject><subject>Male</subject><subject>Neurosciences</subject><subject>Neurovetenskaper</subject><subject>Original</subject><subject>Pancreas</subject><subject>Rats</subject><subject>RNA, Messenger - metabolism</subject><subject>Solitary Nucleus - metabolism</subject><issn>2212-8778</issn><issn>2212-8778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqX_ACEfyyFL_BHbuSBVKyiVKnGBszXrTLJeJXGwk4UVfx7vppTuBV88Hr_3xjN-WfaWFitaUPlht-p91-O0YgVjpxSnL7JLxijLtVL65bP4IruOcVekpaWUJX2dXXDJpZaMXWa_b8k6YF4Ht8dAAkyk9zV2pPGBwACT752FLoU1aebBTs4PpyN0h-gi8Q1pu9lC6wdyc2fb9zn-GgPG6IaWWOy6SNxApi2STYAUHXVGDG7cYji8yV410EW8ftyvsu-fP31bf8kfvt7dr28fcltKNeW8KFDQWmCldFmVhaUI0FAJWlhON7oSvNBUMqWl4KIEYFqA4KWupNCqrvhVdr_o1h52Zgyuh3AwHpw5JXxoDYTJ2Q4NayzWFAWoRolGNKApMF5sQNm6QY1JK1-04k8c582ZWjuPJqXa2UQ0nHHJaMJ_XPAJ3GNtcZgCdGe085vBbU3r96aSSjHGksDNo0DwP2aMk-ldPE4WBvRzNEylTpWSmieoWKA2-BgDNk9laGGOHjE7s9jGHG1jFtsk2rvnT3wi_TXJvx4wfdLeYTDROhzSpFxAO6Upuv9X-AO1pNbu</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zheng, Huiyuan</creator><creator>López-Ferreras, Lorena</creator><creator>Krieger, Jean-Phillipe</creator><creator>Fasul, Stephen</creator><creator>Cea Salazar, Valentina</creator><creator>Valderrama Pena, Natalia</creator><creator>Skibicka, Karolina P.</creator><creator>Rinaman, Linda</creator><general>Elsevier GmbH</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5999-8811</orcidid></search><sort><creationdate>20221201</creationdate><title>A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery</title><author>Zheng, Huiyuan ; López-Ferreras, Lorena ; Krieger, Jean-Phillipe ; Fasul, Stephen ; Cea Salazar, Valentina ; Valderrama Pena, Natalia ; Skibicka, Karolina P. ; Rinaman, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Food intake</topic><topic>Glucagon - metabolism</topic><topic>Glucagon-like peptide 1</topic><topic>Glucagon-Like Peptide 1 - genetics</topic><topic>Glucagon-Like Peptide 1 - metabolism</topic><topic>Glucagon-Secreting Cells - metabolism</topic><topic>Intestine</topic><topic>Male</topic><topic>Neurosciences</topic><topic>Neurovetenskaper</topic><topic>Original</topic><topic>Pancreas</topic><topic>Rats</topic><topic>RNA, Messenger - metabolism</topic><topic>Solitary Nucleus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Huiyuan</creatorcontrib><creatorcontrib>López-Ferreras, Lorena</creatorcontrib><creatorcontrib>Krieger, Jean-Phillipe</creatorcontrib><creatorcontrib>Fasul, Stephen</creatorcontrib><creatorcontrib>Cea Salazar, Valentina</creatorcontrib><creatorcontrib>Valderrama Pena, Natalia</creatorcontrib><creatorcontrib>Skibicka, Karolina P.</creatorcontrib><creatorcontrib>Rinaman, Linda</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular metabolism (Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Huiyuan</au><au>López-Ferreras, Lorena</au><au>Krieger, Jean-Phillipe</au><au>Fasul, Stephen</au><au>Cea Salazar, Valentina</au><au>Valderrama Pena, Natalia</au><au>Skibicka, Karolina P.</au><au>Rinaman, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery</atitle><jtitle>Molecular metabolism (Germany)</jtitle><addtitle>Mol Metab</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>66</volume><spage>101631</spage><epage>101631</epage><pages>101631-101631</pages><artnum>101631</artnum><issn>2212-8778</issn><eissn>2212-8778</eissn><abstract>The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism. •A transgenic Gcg-Cre rat model expresses iCre under control of the Gcg promoter.•iCre is expressed by GLP1-positive cells in the hindbrain, pancreas, and intestine.•Additional brain regions display transient and/or very low levels of Gcg expression.•+/+ Gcg-Cre rats display a marked knockdown of Gcg mRNA and GLP1 protein.•Chemogenetic activation of Gcg neurons suppresses food intake in +/− Gcg-Cre rats.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>36368622</pmid><doi>10.1016/j.molmet.2022.101631</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5999-8811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-8778
ispartof Molecular metabolism (Germany), 2022-12, Vol.66, p.101631-101631, Article 101631
issn 2212-8778
2212-8778
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fced1e4a7f74f4fa81a230ba7cdfe8e
source PubMed (Medline); Elsevier ScienceDirect Journals
subjects Animals
Brain
Food intake
Glucagon - metabolism
Glucagon-like peptide 1
Glucagon-Like Peptide 1 - genetics
Glucagon-Like Peptide 1 - metabolism
Glucagon-Secreting Cells - metabolism
Intestine
Male
Neurosciences
Neurovetenskaper
Original
Pancreas
Rats
RNA, Messenger - metabolism
Solitary Nucleus - metabolism
title A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cre-driver%20rat%20model%20for%20anatomical%20and%20functional%20analysis%20of%20glucagon%20(Gcg)-expressing%20cells%20in%20the%20brain%20and%20periphery&rft.jtitle=Molecular%20metabolism%20(Germany)&rft.au=Zheng,%20Huiyuan&rft.date=2022-12-01&rft.volume=66&rft.spage=101631&rft.epage=101631&rft.pages=101631-101631&rft.artnum=101631&rft.issn=2212-8778&rft.eissn=2212-8778&rft_id=info:doi/10.1016/j.molmet.2022.101631&rft_dat=%3Cproquest_doaj_%3E2735877683%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-300e41d4e9785950c1eaaf16a84c31b8943081627864345aa284a435896487d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735877683&rft_id=info:pmid/36368622&rfr_iscdi=true