Loading…

Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective

Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M > 2.5) of the Kermanshah E...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2019-10, Vol.8 (10), p.462
Main Authors: Karimzadeh, Sadra, Matsuoka, Masashi, Kuang, Jianming, Ge, Linlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3
cites cdi_FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3
container_end_page
container_issue 10
container_start_page 462
container_title ISPRS international journal of geo-information
container_volume 8
creator Karimzadeh, Sadra
Matsuoka, Masashi
Kuang, Jianming
Ge, Linlin
description Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M > 2.5) of the Kermanshah Earthquake (M 7.3) in Iran were collected from the first second following the event to the end of September 2018. Different machine learning (ML) algorithms, including naive Bayes, k-nearest neighbors, a support vector machine, and random forests were used in conjunction with the slip distribution, Coulomb stress change on the source fault (deduced from synthetic aperture radar imagery), and orientations of neighboring active faults to predict the aftershock patterns. Seventy percent of the aftershocks were used for training based on a binary (“yes” or “no”) logic to predict locations of all aftershocks. While untested on independent datasets, receiver operating characteristic results of the same dataset indicate ML methods outperform routine Coulomb maps regarding the spatial prediction of aftershock patterns, especially when details of neighboring active faults are available. Logistic regression results, however, do not show significant differences with ML methods, as hidden information is likely better discovered using logistic regression analysis.
doi_str_mv 10.3390/ijgi8100462
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fd553e1c2b94944ab9abc6c0ec7575c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fd553e1c2b94944ab9abc6c0ec7575c</doaj_id><sourcerecordid>2548557675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3</originalsourceid><addsrcrecordid>eNpNkVtLw0AQhYMoKLVP_oEFHyW616TrW5V6gYqC9XmZbGbTjTUbN6ngv3e1Is7LDDOHbw6cLDth9FwITS982_gZo1QWfC874pzTXOtC7v-bD7PpMLQ0lWZiJulRtn7uYfSwIU8Ra29HHzoSHJm7EeOwDvZ1IKvomwbTmVSfBMgDtCGSBcRx_b6FV7wkc3LlO4if6WTXvkOyRIid7xrylCA9JuoHHmcHDjYDTn_7JHu5Wayu7_Ll4-399XyZg5iJMZeKF5xyJ50ooWaM1siK0tmKY2VrVoArUkdUlpUMRIWUKitBC428VDWKSXa_49YBWtNH_5acmQDe_CxCbEyy7u0GDXe1UgKZ5ZWWWkqoNFS2sBRtqUplE-t0x-pjeN_iMJo2bGOX7Buu5EypsihVUp3tVDaGYYjo_r4yar6TMf-SEV_2X4Gq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548557675</pqid></control><display><type>article</type><title>Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective</title><source>Publicly Available Content Database</source><creator>Karimzadeh, Sadra ; Matsuoka, Masashi ; Kuang, Jianming ; Ge, Linlin</creator><creatorcontrib>Karimzadeh, Sadra ; Matsuoka, Masashi ; Kuang, Jianming ; Ge, Linlin</creatorcontrib><description>Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M &gt; 2.5) of the Kermanshah Earthquake (M 7.3) in Iran were collected from the first second following the event to the end of September 2018. Different machine learning (ML) algorithms, including naive Bayes, k-nearest neighbors, a support vector machine, and random forests were used in conjunction with the slip distribution, Coulomb stress change on the source fault (deduced from synthetic aperture radar imagery), and orientations of neighboring active faults to predict the aftershock patterns. Seventy percent of the aftershocks were used for training based on a binary (“yes” or “no”) logic to predict locations of all aftershocks. While untested on independent datasets, receiver operating characteristic results of the same dataset indicate ML methods outperform routine Coulomb maps regarding the spatial prediction of aftershock patterns, especially when details of neighboring active faults are available. Logistic regression results, however, do not show significant differences with ML methods, as hidden information is likely better discovered using logistic regression analysis.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi8100462</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aftershocks ; Algorithms ; Bayesian analysis ; coulomb stress ; Datasets ; Earthquake prediction ; Earthquakes ; Fault lines ; Friction ; kermanshah earthquake ; Learning algorithms ; Machine learning ; Methods ; Neural networks ; Radar imagery ; Radar imaging ; Regression analysis ; SAR (radar) ; Satellites ; Seismic activity ; Shear stress ; Stress concentration ; Support vector machines ; Synthetic aperture radar ; Training ; Variables</subject><ispartof>ISPRS international journal of geo-information, 2019-10, Vol.8 (10), p.462</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3</citedby><cites>FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3</cites><orcidid>0000-0002-5645-0188 ; 0000-0003-3061-5754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548557675/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548557675?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Karimzadeh, Sadra</creatorcontrib><creatorcontrib>Matsuoka, Masashi</creatorcontrib><creatorcontrib>Kuang, Jianming</creatorcontrib><creatorcontrib>Ge, Linlin</creatorcontrib><title>Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective</title><title>ISPRS international journal of geo-information</title><description>Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M &gt; 2.5) of the Kermanshah Earthquake (M 7.3) in Iran were collected from the first second following the event to the end of September 2018. Different machine learning (ML) algorithms, including naive Bayes, k-nearest neighbors, a support vector machine, and random forests were used in conjunction with the slip distribution, Coulomb stress change on the source fault (deduced from synthetic aperture radar imagery), and orientations of neighboring active faults to predict the aftershock patterns. Seventy percent of the aftershocks were used for training based on a binary (“yes” or “no”) logic to predict locations of all aftershocks. While untested on independent datasets, receiver operating characteristic results of the same dataset indicate ML methods outperform routine Coulomb maps regarding the spatial prediction of aftershock patterns, especially when details of neighboring active faults are available. Logistic regression results, however, do not show significant differences with ML methods, as hidden information is likely better discovered using logistic regression analysis.</description><subject>Aftershocks</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>coulomb stress</subject><subject>Datasets</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>Friction</subject><subject>kermanshah earthquake</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Radar imagery</subject><subject>Radar imaging</subject><subject>Regression analysis</subject><subject>SAR (radar)</subject><subject>Satellites</subject><subject>Seismic activity</subject><subject>Shear stress</subject><subject>Stress concentration</subject><subject>Support vector machines</subject><subject>Synthetic aperture radar</subject><subject>Training</subject><subject>Variables</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLw0AQhYMoKLVP_oEFHyW616TrW5V6gYqC9XmZbGbTjTUbN6ngv3e1Is7LDDOHbw6cLDth9FwITS982_gZo1QWfC874pzTXOtC7v-bD7PpMLQ0lWZiJulRtn7uYfSwIU8Ra29HHzoSHJm7EeOwDvZ1IKvomwbTmVSfBMgDtCGSBcRx_b6FV7wkc3LlO4if6WTXvkOyRIid7xrylCA9JuoHHmcHDjYDTn_7JHu5Wayu7_Ll4-399XyZg5iJMZeKF5xyJ50ooWaM1siK0tmKY2VrVoArUkdUlpUMRIWUKitBC428VDWKSXa_49YBWtNH_5acmQDe_CxCbEyy7u0GDXe1UgKZ5ZWWWkqoNFS2sBRtqUplE-t0x-pjeN_iMJo2bGOX7Buu5EypsihVUp3tVDaGYYjo_r4yar6TMf-SEV_2X4Gq</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Karimzadeh, Sadra</creator><creator>Matsuoka, Masashi</creator><creator>Kuang, Jianming</creator><creator>Ge, Linlin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5645-0188</orcidid><orcidid>https://orcid.org/0000-0003-3061-5754</orcidid></search><sort><creationdate>20191001</creationdate><title>Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective</title><author>Karimzadeh, Sadra ; Matsuoka, Masashi ; Kuang, Jianming ; Ge, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aftershocks</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>coulomb stress</topic><topic>Datasets</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>Friction</topic><topic>kermanshah earthquake</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Radar imagery</topic><topic>Radar imaging</topic><topic>Regression analysis</topic><topic>SAR (radar)</topic><topic>Satellites</topic><topic>Seismic activity</topic><topic>Shear stress</topic><topic>Stress concentration</topic><topic>Support vector machines</topic><topic>Synthetic aperture radar</topic><topic>Training</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimzadeh, Sadra</creatorcontrib><creatorcontrib>Matsuoka, Masashi</creatorcontrib><creatorcontrib>Kuang, Jianming</creatorcontrib><creatorcontrib>Ge, Linlin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimzadeh, Sadra</au><au>Matsuoka, Masashi</au><au>Kuang, Jianming</au><au>Ge, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>8</volume><issue>10</issue><spage>462</spage><pages>462-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Small earthquakes following a large event in the same area are typically aftershocks, which are usually less destructive than mainshocks. These aftershocks are considered mainshocks if they are larger than the previous mainshock. In this study, records of aftershocks (M &gt; 2.5) of the Kermanshah Earthquake (M 7.3) in Iran were collected from the first second following the event to the end of September 2018. Different machine learning (ML) algorithms, including naive Bayes, k-nearest neighbors, a support vector machine, and random forests were used in conjunction with the slip distribution, Coulomb stress change on the source fault (deduced from synthetic aperture radar imagery), and orientations of neighboring active faults to predict the aftershock patterns. Seventy percent of the aftershocks were used for training based on a binary (“yes” or “no”) logic to predict locations of all aftershocks. While untested on independent datasets, receiver operating characteristic results of the same dataset indicate ML methods outperform routine Coulomb maps regarding the spatial prediction of aftershock patterns, especially when details of neighboring active faults are available. Logistic regression results, however, do not show significant differences with ML methods, as hidden information is likely better discovered using logistic regression analysis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi8100462</doi><orcidid>https://orcid.org/0000-0002-5645-0188</orcidid><orcidid>https://orcid.org/0000-0003-3061-5754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2019-10, Vol.8 (10), p.462
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fd553e1c2b94944ab9abc6c0ec7575c
source Publicly Available Content Database
subjects Aftershocks
Algorithms
Bayesian analysis
coulomb stress
Datasets
Earthquake prediction
Earthquakes
Fault lines
Friction
kermanshah earthquake
Learning algorithms
Machine learning
Methods
Neural networks
Radar imagery
Radar imaging
Regression analysis
SAR (radar)
Satellites
Seismic activity
Shear stress
Stress concentration
Support vector machines
Synthetic aperture radar
Training
Variables
title Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary Machine Learning Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Prediction%20of%20Aftershocks%20Triggered%20by%20a%20Major%20Earthquake:%20A%20Binary%20Machine%20Learning%20Perspective&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Karimzadeh,%20Sadra&rft.date=2019-10-01&rft.volume=8&rft.issue=10&rft.spage=462&rft.pages=462-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi8100462&rft_dat=%3Cproquest_doaj_%3E2548557675%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a383t-4526202f4f37ad110de167fcb2ebcd16af6bcdee5c171a3be005c4a939e275de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548557675&rft_id=info:pmid/&rfr_iscdi=true