Loading…
Evaluation of a natural language processing tool for extracting gender, weight, ethnicity, and race in the US food and drug administration adverse event reporting system
The US Food and Drug Administration Adverse Event Reporting System (FAERS) contains over 24 million individual case safety reports (ICSRs). In this research project, we evaluated a natural language processing (NLP) tool’s ability to extract four demographic variables (gender, weight, ethnicity, race...
Saved in:
Published in: | Frontiers in Drug Safety and Regulation 2022-11, Vol.2 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The US Food and Drug Administration Adverse Event Reporting System (FAERS) contains over 24 million individual case safety reports (ICSRs). In this research project, we evaluated a natural language processing (NLP) tool’s ability to extract four demographic variables (gender, weight, ethnicity, race) from ICSR narratives. Specificity of the NLP algorithm was over 94% for all demographics, while sensitivity varied between the demographics: 98.6% (gender), 45.5% (weight), 100% (ethnicity), and 85.3% (race). Among ICSRs missing weight, ethnicity, and race in the structured field, few cases had this information in the narrative (>95% missing); consequently, the positive predictive value (PPV) for these three demographics had wide 95% confidence intervals. After NLP implementation, the total number of ICSRs missing gender was reduced by 33% (i.e., NLP identified 472 thousand reports having a gender value in the narrative that was not in the structured field), while the total number of ICSRs missing weight, ethnicity, or race was reduced by less than 4%. This study demonstrated that the implementation of an NLP tool can provide meaningful improvements in the availability of gender information for pharmacovigilance activities conducted with FAERS data. In contrast, NLP tools targeting the extraction of weight, ethnicity, or race from free-text fields have minimal impact largely because the information was infrequently provided by the reporter. Further gains in completeness of these fields must originate from increases in provision of demographic information from the reporter rather than informatic solutions. |
---|---|
ISSN: | 2674-0869 2674-0869 |
DOI: | 10.3389/fdsfr.2022.1020943 |