Loading…

The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2

The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is c...

Full description

Saved in:
Bibliographic Details
Published in:Geo Data 2024-03, Vol.6 (1), p.14-23
Main Authors: Lee, Eu-Ru, Lee, Ha-Seong, Park, Sun-Cheon, Jung, Hyung-Sup
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23
container_issue 1
container_start_page 14
container_title Geo Data
container_volume 6
creator Lee, Eu-Ru
Lee, Ha-Seong
Park, Sun-Cheon
Jung, Hyung-Sup
description The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.
doi_str_mv 10.22761/GD.2023.0055
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</doaj_id><sourcerecordid>oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673</originalsourceid><addsrcrecordid>eNpNkDtvwjAQgK2qlYooY3f_AYPfxt0QtGkkJAbobF1iG0JDgpIs_PsaqKou95Lu092H0CujU86NZrNsNeWUiymlSj2gETdMEEWpfPxXP6NJ3x8ppdxyJaQcIdgdAl4eQtscK7yG74Cz0C5yvIIB-jDgIkWPqwZvzkNVQo23MIS6roaA8xPsQ3d5S2uN72EgakbMjMxxavE2NEPVhJrwF_QUoe7D5DeP0dfH-275SdabLF8u1qRkUigSNS-slp5qDwYEWOuL4DVjEJWxpTSSc1qWMUI63HNGmRUxCu-jKZjWRoxRfuf6Fo7u3FUn6C6uhcrdBm23d9ClH-rgePSRW8aUNEIm0DzExIzcS5A6Gp9Y5M4qu7bvuxD_eIy6m26XrdxVt7vqFj_Rbm8B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><source>Alma/SFX Local Collection</source><creator>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</creator><creatorcontrib>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</creatorcontrib><description>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</description><identifier>ISSN: 2713-5004</identifier><identifier>EISSN: 2713-5004</identifier><identifier>DOI: 10.22761/GD.2023.0055</identifier><language>eng</language><publisher>GeoAI Data Society</publisher><subject>optical satellite images ; segmentation ; waterbody</subject><ispartof>Geo Data, 2024-03, Vol.6 (1), p.14-23</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8383-5991 ; 0009-0007-1198-3689 ; 0000-0003-2335-8438 ; 0000-0003-3026-0543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Eu-Ru</creatorcontrib><creatorcontrib>Lee, Ha-Seong</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Jung, Hyung-Sup</creatorcontrib><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><title>Geo Data</title><description>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</description><subject>optical satellite images</subject><subject>segmentation</subject><subject>waterbody</subject><issn>2713-5004</issn><issn>2713-5004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkDtvwjAQgK2qlYooY3f_AYPfxt0QtGkkJAbobF1iG0JDgpIs_PsaqKou95Lu092H0CujU86NZrNsNeWUiymlSj2gETdMEEWpfPxXP6NJ3x8ppdxyJaQcIdgdAl4eQtscK7yG74Cz0C5yvIIB-jDgIkWPqwZvzkNVQo23MIS6roaA8xPsQ3d5S2uN72EgakbMjMxxavE2NEPVhJrwF_QUoe7D5DeP0dfH-275SdabLF8u1qRkUigSNS-slp5qDwYEWOuL4DVjEJWxpTSSc1qWMUI63HNGmRUxCu-jKZjWRoxRfuf6Fo7u3FUn6C6uhcrdBm23d9ClH-rgePSRW8aUNEIm0DzExIzcS5A6Gp9Y5M4qu7bvuxD_eIy6m26XrdxVt7vqFj_Rbm8B</recordid><startdate>20240331</startdate><enddate>20240331</enddate><creator>Lee, Eu-Ru</creator><creator>Lee, Ha-Seong</creator><creator>Park, Sun-Cheon</creator><creator>Jung, Hyung-Sup</creator><general>GeoAI Data Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8383-5991</orcidid><orcidid>https://orcid.org/0009-0007-1198-3689</orcidid><orcidid>https://orcid.org/0000-0003-2335-8438</orcidid><orcidid>https://orcid.org/0000-0003-3026-0543</orcidid></search><sort><creationdate>20240331</creationdate><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><author>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>optical satellite images</topic><topic>segmentation</topic><topic>waterbody</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eu-Ru</creatorcontrib><creatorcontrib>Lee, Ha-Seong</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Jung, Hyung-Sup</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geo Data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eu-Ru</au><au>Lee, Ha-Seong</au><au>Park, Sun-Cheon</au><au>Jung, Hyung-Sup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</atitle><jtitle>Geo Data</jtitle><date>2024-03-31</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>14</spage><epage>23</epage><pages>14-23</pages><issn>2713-5004</issn><eissn>2713-5004</eissn><abstract>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</abstract><pub>GeoAI Data Society</pub><doi>10.22761/GD.2023.0055</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8383-5991</orcidid><orcidid>https://orcid.org/0009-0007-1198-3689</orcidid><orcidid>https://orcid.org/0000-0003-2335-8438</orcidid><orcidid>https://orcid.org/0000-0003-3026-0543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2713-5004
ispartof Geo Data, 2024-03, Vol.6 (1), p.14-23
issn 2713-5004
2713-5004
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d
source Alma/SFX Local Collection
subjects optical satellite images
segmentation
waterbody
title The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Cheonji%20Lake%20GeoAI%20Dataset%20based%20in%20Optical%20Satellite%20Imagery:%20Landsat-5/-7/-8%20and%20Sentinel-2&rft.jtitle=Geo%20Data&rft.au=Lee,%20Eu-Ru&rft.date=2024-03-31&rft.volume=6&rft.issue=1&rft.spage=14&rft.epage=23&rft.pages=14-23&rft.issn=2713-5004&rft.eissn=2713-5004&rft_id=info:doi/10.22761/GD.2023.0055&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true