Loading…
The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2
The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is c...
Saved in:
Published in: | Geo Data 2024-03, Vol.6 (1), p.14-23 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 14 |
container_title | Geo Data |
container_volume | 6 |
creator | Lee, Eu-Ru Lee, Ha-Seong Park, Sun-Cheon Jung, Hyung-Sup |
description | The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established. |
doi_str_mv | 10.22761/GD.2023.0055 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</doaj_id><sourcerecordid>oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673</originalsourceid><addsrcrecordid>eNpNkDtvwjAQgK2qlYooY3f_AYPfxt0QtGkkJAbobF1iG0JDgpIs_PsaqKou95Lu092H0CujU86NZrNsNeWUiymlSj2gETdMEEWpfPxXP6NJ3x8ppdxyJaQcIdgdAl4eQtscK7yG74Cz0C5yvIIB-jDgIkWPqwZvzkNVQo23MIS6roaA8xPsQ3d5S2uN72EgakbMjMxxavE2NEPVhJrwF_QUoe7D5DeP0dfH-275SdabLF8u1qRkUigSNS-slp5qDwYEWOuL4DVjEJWxpTSSc1qWMUI63HNGmRUxCu-jKZjWRoxRfuf6Fo7u3FUn6C6uhcrdBm23d9ClH-rgePSRW8aUNEIm0DzExIzcS5A6Gp9Y5M4qu7bvuxD_eIy6m26XrdxVt7vqFj_Rbm8B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><source>Alma/SFX Local Collection</source><creator>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</creator><creatorcontrib>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</creatorcontrib><description>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</description><identifier>ISSN: 2713-5004</identifier><identifier>EISSN: 2713-5004</identifier><identifier>DOI: 10.22761/GD.2023.0055</identifier><language>eng</language><publisher>GeoAI Data Society</publisher><subject>optical satellite images ; segmentation ; waterbody</subject><ispartof>Geo Data, 2024-03, Vol.6 (1), p.14-23</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8383-5991 ; 0009-0007-1198-3689 ; 0000-0003-2335-8438 ; 0000-0003-3026-0543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Eu-Ru</creatorcontrib><creatorcontrib>Lee, Ha-Seong</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Jung, Hyung-Sup</creatorcontrib><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><title>Geo Data</title><description>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</description><subject>optical satellite images</subject><subject>segmentation</subject><subject>waterbody</subject><issn>2713-5004</issn><issn>2713-5004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkDtvwjAQgK2qlYooY3f_AYPfxt0QtGkkJAbobF1iG0JDgpIs_PsaqKou95Lu092H0CujU86NZrNsNeWUiymlSj2gETdMEEWpfPxXP6NJ3x8ppdxyJaQcIdgdAl4eQtscK7yG74Cz0C5yvIIB-jDgIkWPqwZvzkNVQo23MIS6roaA8xPsQ3d5S2uN72EgakbMjMxxavE2NEPVhJrwF_QUoe7D5DeP0dfH-275SdabLF8u1qRkUigSNS-slp5qDwYEWOuL4DVjEJWxpTSSc1qWMUI63HNGmRUxCu-jKZjWRoxRfuf6Fo7u3FUn6C6uhcrdBm23d9ClH-rgePSRW8aUNEIm0DzExIzcS5A6Gp9Y5M4qu7bvuxD_eIy6m26XrdxVt7vqFj_Rbm8B</recordid><startdate>20240331</startdate><enddate>20240331</enddate><creator>Lee, Eu-Ru</creator><creator>Lee, Ha-Seong</creator><creator>Park, Sun-Cheon</creator><creator>Jung, Hyung-Sup</creator><general>GeoAI Data Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8383-5991</orcidid><orcidid>https://orcid.org/0009-0007-1198-3689</orcidid><orcidid>https://orcid.org/0000-0003-2335-8438</orcidid><orcidid>https://orcid.org/0000-0003-3026-0543</orcidid></search><sort><creationdate>20240331</creationdate><title>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</title><author>Lee, Eu-Ru ; Lee, Ha-Seong ; Park, Sun-Cheon ; Jung, Hyung-Sup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>optical satellite images</topic><topic>segmentation</topic><topic>waterbody</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eu-Ru</creatorcontrib><creatorcontrib>Lee, Ha-Seong</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Jung, Hyung-Sup</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geo Data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eu-Ru</au><au>Lee, Ha-Seong</au><au>Park, Sun-Cheon</au><au>Jung, Hyung-Sup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2</atitle><jtitle>Geo Data</jtitle><date>2024-03-31</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>14</spage><epage>23</epage><pages>14-23</pages><issn>2713-5004</issn><eissn>2713-5004</eissn><abstract>The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.</abstract><pub>GeoAI Data Society</pub><doi>10.22761/GD.2023.0055</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8383-5991</orcidid><orcidid>https://orcid.org/0009-0007-1198-3689</orcidid><orcidid>https://orcid.org/0000-0003-2335-8438</orcidid><orcidid>https://orcid.org/0000-0003-3026-0543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2713-5004 |
ispartof | Geo Data, 2024-03, Vol.6 (1), p.14-23 |
issn | 2713-5004 2713-5004 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d |
source | Alma/SFX Local Collection |
subjects | optical satellite images segmentation waterbody |
title | The Cheonji Lake GeoAI Dataset based in Optical Satellite Imagery: Landsat-5/-7/-8 and Sentinel-2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Cheonji%20Lake%20GeoAI%20Dataset%20based%20in%20Optical%20Satellite%20Imagery:%20Landsat-5/-7/-8%20and%20Sentinel-2&rft.jtitle=Geo%20Data&rft.au=Lee,%20Eu-Ru&rft.date=2024-03-31&rft.volume=6&rft.issue=1&rft.spage=14&rft.epage=23&rft.pages=14-23&rft.issn=2713-5004&rft.eissn=2713-5004&rft_id=info:doi/10.22761/GD.2023.0055&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2fdf2911547340198ef34df2d4a46f7d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1435-f62b964d06da7a3a99dbed611af579c474220ccffa534d210193ff3ddf7b16673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |