Loading…

Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction

Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science 2022-02, Vol.8, p.e893-e893, Article e893
Main Authors: Wang, Bo, Cheng, Junqiang, Cao, Jie, Wang, Changhai, Huang, Wanwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73
cites cdi_FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73
container_end_page e893
container_issue
container_start_page e893
container_title PeerJ. Computer science
container_volume 8
creator Wang, Bo
Cheng, Junqiang
Cao, Jie
Wang, Changhai
Huang, Wanwei
description Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction and the resource efficiency in DE3C environments. Existing works only focused on one or two of three sub-problems (offloading decision, task assignment and task ordering), leading to a sub-optimal solution. To address this issue, we first formulated the problem as a binary nonlinear programming, and proposed an integer particle swarm optimization method (IPSO) to solve the problem in a reasonable time. With integer coding of task assignment to computing cores, our proposed method exploited IPSO to jointly solve the problems of offloading decision and task assignment, and integrated earliest deadline first scheme into the IPSO to solve the task ordering problem for each core. Extensive experimental results showed that our method achieved upto 953% and 964% better performance than that of several classical and state-of-the-art task scheduling methods in SLA satisfaction and resource efficiency, respectively.
doi_str_mv 10.7717/peerj-cs.893
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2fe6b9d9431b4ef4beefdfd13590f9f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2fe6b9d9431b4ef4beefdfd13590f9f8</doaj_id><sourcerecordid>2628897549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73</originalsourceid><addsrcrecordid>eNpdks1v1DAQxSMEolXpjTOyxIUDKfFXbF-QqorCSitxAM6WY4-3XpI42MlWcOt_jre7VC2-eDTv5yd7_KrqNW4uhMDiwwSQtrXNF1LRZ9UpoaKtuVLk-aP6pDrPeds0Dea4LPWyOqGcKSapOq3uVuMMG0hoMmkOtgeUb00aUJzmMIQ_Zg5xRJ3J4NBs8k-U7Q24pQ_jBvmYkINdsFCD20Bt-7g4ZGOcIJVzOyj1MC3znp0jCsOUYml-W1-iXPTsjd27v6peeNNnOD_uZ9WP60_fr77U66-fV1eX69oyIefaUk5Na4hk2BBHibfYedHh1hPPTVtk4KRhElsuOQFOMesaZgnnAlPWCXpWrQ6-LpqtnlIYTPqtown6vhHTRh9HoImHtlNOMYo7Bp51AN55hylXjVdeFq-PB69p6QZwFsY5mf6J6VNlDDd6E3daNYwR0hSDd0eDFH8tkGc9hGyh780IccmatFy2HAvKCvr2P3QblzSWURWKSKlE-cxCvT9QNsWcE_iHy-BG76Oi76OibdYlKgV_8_gBD_C_YNC_e-u-iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628897549</pqid></control><display><type>article</type><title>Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Wang, Bo ; Cheng, Junqiang ; Cao, Jie ; Wang, Changhai ; Huang, Wanwei</creator><creatorcontrib>Wang, Bo ; Cheng, Junqiang ; Cao, Jie ; Wang, Changhai ; Huang, Wanwei</creatorcontrib><description>Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction and the resource efficiency in DE3C environments. Existing works only focused on one or two of three sub-problems (offloading decision, task assignment and task ordering), leading to a sub-optimal solution. To address this issue, we first formulated the problem as a binary nonlinear programming, and proposed an integer particle swarm optimization method (IPSO) to solve the problem in a reasonable time. With integer coding of task assignment to computing cores, our proposed method exploited IPSO to jointly solve the problems of offloading decision and task assignment, and integrated earliest deadline first scheme into the IPSO to solve the task ordering problem for each core. Extensive experimental results showed that our method achieved upto 953% and 964% better performance than that of several classical and state-of-the-art task scheduling methods in SLA satisfaction and resource efficiency, respectively.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.893</identifier><identifier>PMID: 35494839</identifier><language>eng</language><publisher>United States: PeerJ, Inc</publisher><subject>Cloud computing ; Computer Architecture ; Deadlines ; Distributed and Parallel Computing ; Edge cloud ; Efficiency ; Genetic algorithms ; Heuristic ; Integers ; Internet of Things ; Nonlinear programming ; Optimization ; Particle swarm optimization ; Scheduling ; Task offloading ; Task scheduling ; User satisfaction</subject><ispartof>PeerJ. Computer science, 2022-02, Vol.8, p.e893-e893, Article e893</ispartof><rights>2022 Wang et al.</rights><rights>2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Wang et al. 2022 Wang et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73</citedby><cites>FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2628897549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2628897549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35494839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cheng, Junqiang</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Wang, Changhai</creatorcontrib><creatorcontrib>Huang, Wanwei</creatorcontrib><title>Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction and the resource efficiency in DE3C environments. Existing works only focused on one or two of three sub-problems (offloading decision, task assignment and task ordering), leading to a sub-optimal solution. To address this issue, we first formulated the problem as a binary nonlinear programming, and proposed an integer particle swarm optimization method (IPSO) to solve the problem in a reasonable time. With integer coding of task assignment to computing cores, our proposed method exploited IPSO to jointly solve the problems of offloading decision and task assignment, and integrated earliest deadline first scheme into the IPSO to solve the task ordering problem for each core. Extensive experimental results showed that our method achieved upto 953% and 964% better performance than that of several classical and state-of-the-art task scheduling methods in SLA satisfaction and resource efficiency, respectively.</description><subject>Cloud computing</subject><subject>Computer Architecture</subject><subject>Deadlines</subject><subject>Distributed and Parallel Computing</subject><subject>Edge cloud</subject><subject>Efficiency</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Integers</subject><subject>Internet of Things</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Scheduling</subject><subject>Task offloading</subject><subject>Task scheduling</subject><subject>User satisfaction</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1v1DAQxSMEolXpjTOyxIUDKfFXbF-QqorCSitxAM6WY4-3XpI42MlWcOt_jre7VC2-eDTv5yd7_KrqNW4uhMDiwwSQtrXNF1LRZ9UpoaKtuVLk-aP6pDrPeds0Dea4LPWyOqGcKSapOq3uVuMMG0hoMmkOtgeUb00aUJzmMIQ_Zg5xRJ3J4NBs8k-U7Q24pQ_jBvmYkINdsFCD20Bt-7g4ZGOcIJVzOyj1MC3znp0jCsOUYml-W1-iXPTsjd27v6peeNNnOD_uZ9WP60_fr77U66-fV1eX69oyIefaUk5Na4hk2BBHibfYedHh1hPPTVtk4KRhElsuOQFOMesaZgnnAlPWCXpWrQ6-LpqtnlIYTPqtown6vhHTRh9HoImHtlNOMYo7Bp51AN55hylXjVdeFq-PB69p6QZwFsY5mf6J6VNlDDd6E3daNYwR0hSDd0eDFH8tkGc9hGyh780IccmatFy2HAvKCvr2P3QblzSWURWKSKlE-cxCvT9QNsWcE_iHy-BG76Oi76OibdYlKgV_8_gBD_C_YNC_e-u-iw</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Wang, Bo</creator><creator>Cheng, Junqiang</creator><creator>Cao, Jie</creator><creator>Wang, Changhai</creator><creator>Huang, Wanwei</creator><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220215</creationdate><title>Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction</title><author>Wang, Bo ; Cheng, Junqiang ; Cao, Jie ; Wang, Changhai ; Huang, Wanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cloud computing</topic><topic>Computer Architecture</topic><topic>Deadlines</topic><topic>Distributed and Parallel Computing</topic><topic>Edge cloud</topic><topic>Efficiency</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Integers</topic><topic>Internet of Things</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Scheduling</topic><topic>Task offloading</topic><topic>Task scheduling</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cheng, Junqiang</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><creatorcontrib>Wang, Changhai</creatorcontrib><creatorcontrib>Huang, Wanwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bo</au><au>Cheng, Junqiang</au><au>Cao, Jie</au><au>Wang, Changhai</au><au>Huang, Wanwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>8</volume><spage>e893</spage><epage>e893</epage><pages>e893-e893</pages><artnum>e893</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Task scheduling helps to improve the resource efficiency and the user satisfaction for Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction and the resource efficiency in DE3C environments. Existing works only focused on one or two of three sub-problems (offloading decision, task assignment and task ordering), leading to a sub-optimal solution. To address this issue, we first formulated the problem as a binary nonlinear programming, and proposed an integer particle swarm optimization method (IPSO) to solve the problem in a reasonable time. With integer coding of task assignment to computing cores, our proposed method exploited IPSO to jointly solve the problems of offloading decision and task assignment, and integrated earliest deadline first scheme into the IPSO to solve the task ordering problem for each core. Extensive experimental results showed that our method achieved upto 953% and 964% better performance than that of several classical and state-of-the-art task scheduling methods in SLA satisfaction and resource efficiency, respectively.</abstract><cop>United States</cop><pub>PeerJ, Inc</pub><pmid>35494839</pmid><doi>10.7717/peerj-cs.893</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2022-02, Vol.8, p.e893-e893, Article e893
issn 2376-5992
2376-5992
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2fe6b9d9431b4ef4beefdfd13590f9f8
source PubMed Central Free; Publicly Available Content Database
subjects Cloud computing
Computer Architecture
Deadlines
Distributed and Parallel Computing
Edge cloud
Efficiency
Genetic algorithms
Heuristic
Integers
Internet of Things
Nonlinear programming
Optimization
Particle swarm optimization
Scheduling
Task offloading
Task scheduling
User satisfaction
title Integer particle swarm optimization based task scheduling for device-edge-cloud cooperative computing to improve SLA satisfaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20particle%20swarm%20optimization%20based%20task%20scheduling%20for%20device-edge-cloud%20cooperative%20computing%20to%20improve%20SLA%20satisfaction&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Wang,%20Bo&rft.date=2022-02-15&rft.volume=8&rft.spage=e893&rft.epage=e893&rft.pages=e893-e893&rft.artnum=e893&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.893&rft_dat=%3Cproquest_doaj_%3E2628897549%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-c353a6a2841a2d32fc1df7b16f2f5a6c35e520481c5852e5314b04c2557134b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628897549&rft_id=info:pmid/35494839&rfr_iscdi=true