Loading…
Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060
Building stock growth around the world drives extensive material consumption and environmental impacts. Future impacts will be dependent on the level and rate of socioeconomic development, along with material use and supply strategies. Here we evaluate material-related greenhouse gas (GHG) emissions...
Saved in:
Published in: | Nature communications 2021-10, Vol.12 (1), p.6126-6126, Article 6126 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Building stock growth around the world drives extensive material consumption and environmental impacts. Future impacts will be dependent on the level and rate of socioeconomic development, along with material use and supply strategies. Here we evaluate material-related greenhouse gas (GHG) emissions for residential and commercial buildings along with their reduction potentials in 26 global regions by 2060. For a middle-of-the-road baseline scenario, building material-related emissions see an increase of 3.5 to 4.6 Gt CO2eq yr-1 between 2020–2060. Low- and lower-middle-income regions see rapid emission increase from 750 Mt (22% globally) in 2020 and 2.4 Gt (51%) in 2060, while higher-income regions shrink in both absolute and relative terms. Implementing several material efficiency strategies together in a High Efficiency (HE) scenario could almost half the baseline emissions. Yet, even in this scenario, the building material sector would require double its current proportional share of emissions to meet a 1.5 °C-compatible target.
Building construction causes large material-related emissions which present a serious decarbonization challenge. Here, the authors show that the building material sector could halve emissions by increasing efficiency until 2060 but even then its emissions would be twice as high as needed to meet the 1.5 °C target. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-26212-z |