Loading…
Pooled library screening with multiplexed Cpf1 library
Capitalizing on the inherent multiplexing capability of AsCpf1, we developed a multiplexed, high-throughput screening strategy that minimizes library size without sacrificing gene targeting efficiency. We demonstrated that AsCpf1 can be used for functional genomics screenings and that an AsCpf1-base...
Saved in:
Published in: | Nature communications 2019-07, Vol.10 (1), p.3144-10, Article 3144 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Capitalizing on the inherent multiplexing capability of AsCpf1, we developed a multiplexed, high-throughput screening strategy that minimizes library size without sacrificing gene targeting efficiency. We demonstrated that AsCpf1 can be used for functional genomics screenings and that an AsCpf1-based multiplexed library performs similarly as compared to currently available monocistronic CRISPR/Cas9 libraries, with only one vector required for each gene. We construct the smallest whole-genome CRISPR knock-out library, Mini-human, for the human genome (
n
=
17,032
constructs targeting 16,977 protein-coding genes), which performs favorably compared to conventional Cas9 libraries.
AsCpf1 is an alternative nuclease to Cas9 for CRISPR mediated genome engineering. Here the authors demonstrate functional genomic screens with AsCpf1 that minimize library size with no loss in gene targeting efficiency. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10963-x |