Loading…
An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region
During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here,...
Saved in:
Published in: | BMJ global health 2022-04, Vol.7 (4), p.e007295 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863 |
---|---|
cites | cdi_FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863 |
container_end_page | |
container_issue | 4 |
container_start_page | e007295 |
container_title | BMJ global health |
container_volume | 7 |
creator | James, Ananthu Dalal, Jyoti Kousi, Timokleia Vivacqua, Daniela Câmara, Daniel Cardoso Portela Dos Reis, Izabel Cristina Botero Mesa, Sara Ng’ambi, Wignston Ansobi, Papy Bianchi, Lucas M Lee, Theresa M Ogundiran, Opeayo Stoll, Beat Chimbetete, Cleophas Mboussou, Franck Impouma, Benido Hofer, Cristina Barroso Coelho, Flávio Codeço Keiser, Olivia Abbate, Jessica Lee |
description | During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p |
doi_str_mv | 10.1136/bmjgh-2021-007295 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_302f48e24b1444318eee683193246c48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_302f48e24b1444318eee683193246c48</doaj_id><sourcerecordid>2650253552</sourcerecordid><originalsourceid>FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863</originalsourceid><addsrcrecordid>eNp1kstuEzEUhkcIRKvSB2CDRmLDZuD4OvYGKQqXRqqUDZelZXvsxNHMONgTpO54DV6PJ8HJlNIisfH1_z-fI_9V9RzBa4QIf2OG3WbbYMCoAWixZI-qcwxMNq0E8fje-qy6zHkHAKgtA_Cn1RlhFAmK0HnlF2MdxqZz-2lb50lPIU_B6r7Wo-5vcsh19PW0dfVy_WX1rkGy3uuxc0Owv378zMUaplDUeZ-c7sr2pP16ta4XPhXOWCe3CXF8Vj3xus_u8na-qD5_eP9pedVcrz-ulovrxjCCpoYjg7UFQT0F6aAzphVGCs-9NAKM1hJhYWXnCGWWGd5x2oL1hnJLrBWcXFSrmdtFvVP7FAadblTUQZ0OYtoonUqDvVMEsKfCYWoQpZQg4ZzjgiBJcMFRUVhvZ9b-YAbXWTdOSfcPoA9vxrBVm_hdSUCkPRXz6haQ4reDy5MaQrau7_Xo4iErzBlgRhjDRfryH-kuHlL5glkFIAGOFaFZZVPMOTl_VwwCdQyFOoVCHUOh5lAUz4v7Xdw5_kSgCJpZULx_X_0_8DetLMC4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650009008</pqid></control><display><type>article</type><title>An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region</title><source>BMJ Open Access Journals</source><source>PubMed Central (Open Access)</source><creator>James, Ananthu ; Dalal, Jyoti ; Kousi, Timokleia ; Vivacqua, Daniela ; Câmara, Daniel Cardoso Portela ; Dos Reis, Izabel Cristina ; Botero Mesa, Sara ; Ng’ambi, Wignston ; Ansobi, Papy ; Bianchi, Lucas M ; Lee, Theresa M ; Ogundiran, Opeayo ; Stoll, Beat ; Chimbetete, Cleophas ; Mboussou, Franck ; Impouma, Benido ; Hofer, Cristina Barroso ; Coelho, Flávio Codeço ; Keiser, Olivia ; Abbate, Jessica Lee</creator><creatorcontrib>James, Ananthu ; Dalal, Jyoti ; Kousi, Timokleia ; Vivacqua, Daniela ; Câmara, Daniel Cardoso Portela ; Dos Reis, Izabel Cristina ; Botero Mesa, Sara ; Ng’ambi, Wignston ; Ansobi, Papy ; Bianchi, Lucas M ; Lee, Theresa M ; Ogundiran, Opeayo ; Stoll, Beat ; Chimbetete, Cleophas ; Mboussou, Franck ; Impouma, Benido ; Hofer, Cristina Barroso ; Coelho, Flávio Codeço ; Keiser, Olivia ; Abbate, Jessica Lee</creatorcontrib><description>During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p<0.001) and cumulative (p<0.001) attack rates, and lower CFRs (p=0.021). More urbanised countries also had higher attack rates (p<0.001 for both indicators). Countries applying more stringent early control policies experienced greater delay in detection of the first case (p<0.001), but the initial propagation of the virus was slower in relatively wealthy, touristic African countries (p=0.023). Careful and early implementation of strict government policies were likely pivotal to delaying the initial phase of the pandemic, but did not have much impact on other indicators of spread and severity. An over-reliance on disruptive containment measures in more resource-limited contexts is neither effective nor sustainable. We thus urge decision-makers to prioritise the reduction of resource-based health disparities, and surveillance and response capacities in particular, to ensure global resilience against future threats to public health and economic stability.</description><identifier>ISSN: 2059-7908</identifier><identifier>EISSN: 2059-7908</identifier><identifier>DOI: 10.1136/bmjgh-2021-007295</identifier><identifier>PMID: 35418411</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd</publisher><subject>Coronaviruses ; COVID-19 ; Cross-Sectional Studies ; cross-sectional survey ; Disease transmission ; Epidemics ; epidemiology ; Fatalities ; GDP ; Gross Domestic Product ; Humans ; mathematical modelling ; Original Research ; Pandemics ; Per capita ; Population density ; Public health ; Regression analysis ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Tourism ; World Health Organization</subject><ispartof>BMJ global health, 2022-04, Vol.7 (4), p.e007295</ispartof><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863</citedby><cites>FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863</cites><orcidid>0000-0002-5439-4477 ; 0000-0002-5724-0502 ; 0000-0003-2485-3334 ; 0000-0001-8633-0913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://gh.bmj.com/content/7/4/e007295.full.pdf$$EPDF$$P50$$Gbmj$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://gh.bmj.com/content/7/4/e007295.full$$EHTML$$P50$$Gbmj$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,55350,77660,77686</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35418411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>James, Ananthu</creatorcontrib><creatorcontrib>Dalal, Jyoti</creatorcontrib><creatorcontrib>Kousi, Timokleia</creatorcontrib><creatorcontrib>Vivacqua, Daniela</creatorcontrib><creatorcontrib>Câmara, Daniel Cardoso Portela</creatorcontrib><creatorcontrib>Dos Reis, Izabel Cristina</creatorcontrib><creatorcontrib>Botero Mesa, Sara</creatorcontrib><creatorcontrib>Ng’ambi, Wignston</creatorcontrib><creatorcontrib>Ansobi, Papy</creatorcontrib><creatorcontrib>Bianchi, Lucas M</creatorcontrib><creatorcontrib>Lee, Theresa M</creatorcontrib><creatorcontrib>Ogundiran, Opeayo</creatorcontrib><creatorcontrib>Stoll, Beat</creatorcontrib><creatorcontrib>Chimbetete, Cleophas</creatorcontrib><creatorcontrib>Mboussou, Franck</creatorcontrib><creatorcontrib>Impouma, Benido</creatorcontrib><creatorcontrib>Hofer, Cristina Barroso</creatorcontrib><creatorcontrib>Coelho, Flávio Codeço</creatorcontrib><creatorcontrib>Keiser, Olivia</creatorcontrib><creatorcontrib>Abbate, Jessica Lee</creatorcontrib><title>An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region</title><title>BMJ global health</title><addtitle>BMJ Glob Health</addtitle><addtitle>BMJ Global Health</addtitle><addtitle>BMJ Glob Health</addtitle><description>During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p<0.001) and cumulative (p<0.001) attack rates, and lower CFRs (p=0.021). More urbanised countries also had higher attack rates (p<0.001 for both indicators). Countries applying more stringent early control policies experienced greater delay in detection of the first case (p<0.001), but the initial propagation of the virus was slower in relatively wealthy, touristic African countries (p=0.023). Careful and early implementation of strict government policies were likely pivotal to delaying the initial phase of the pandemic, but did not have much impact on other indicators of spread and severity. An over-reliance on disruptive containment measures in more resource-limited contexts is neither effective nor sustainable. We thus urge decision-makers to prioritise the reduction of resource-based health disparities, and surveillance and response capacities in particular, to ensure global resilience against future threats to public health and economic stability.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cross-Sectional Studies</subject><subject>cross-sectional survey</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>epidemiology</subject><subject>Fatalities</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Humans</subject><subject>mathematical modelling</subject><subject>Original Research</subject><subject>Pandemics</subject><subject>Per capita</subject><subject>Population density</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Tourism</subject><subject>World Health Organization</subject><issn>2059-7908</issn><issn>2059-7908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstuEzEUhkcIRKvSB2CDRmLDZuD4OvYGKQqXRqqUDZelZXvsxNHMONgTpO54DV6PJ8HJlNIisfH1_z-fI_9V9RzBa4QIf2OG3WbbYMCoAWixZI-qcwxMNq0E8fje-qy6zHkHAKgtA_Cn1RlhFAmK0HnlF2MdxqZz-2lb50lPIU_B6r7Wo-5vcsh19PW0dfVy_WX1rkGy3uuxc0Owv378zMUaplDUeZ-c7sr2pP16ta4XPhXOWCe3CXF8Vj3xus_u8na-qD5_eP9pedVcrz-ulovrxjCCpoYjg7UFQT0F6aAzphVGCs-9NAKM1hJhYWXnCGWWGd5x2oL1hnJLrBWcXFSrmdtFvVP7FAadblTUQZ0OYtoonUqDvVMEsKfCYWoQpZQg4ZzjgiBJcMFRUVhvZ9b-YAbXWTdOSfcPoA9vxrBVm_hdSUCkPRXz6haQ4reDy5MaQrau7_Xo4iErzBlgRhjDRfryH-kuHlL5glkFIAGOFaFZZVPMOTl_VwwCdQyFOoVCHUOh5lAUz4v7Xdw5_kSgCJpZULx_X_0_8DetLMC4</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>James, Ananthu</creator><creator>Dalal, Jyoti</creator><creator>Kousi, Timokleia</creator><creator>Vivacqua, Daniela</creator><creator>Câmara, Daniel Cardoso Portela</creator><creator>Dos Reis, Izabel Cristina</creator><creator>Botero Mesa, Sara</creator><creator>Ng’ambi, Wignston</creator><creator>Ansobi, Papy</creator><creator>Bianchi, Lucas M</creator><creator>Lee, Theresa M</creator><creator>Ogundiran, Opeayo</creator><creator>Stoll, Beat</creator><creator>Chimbetete, Cleophas</creator><creator>Mboussou, Franck</creator><creator>Impouma, Benido</creator><creator>Hofer, Cristina Barroso</creator><creator>Coelho, Flávio Codeço</creator><creator>Keiser, Olivia</creator><creator>Abbate, Jessica Lee</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5439-4477</orcidid><orcidid>https://orcid.org/0000-0002-5724-0502</orcidid><orcidid>https://orcid.org/0000-0003-2485-3334</orcidid><orcidid>https://orcid.org/0000-0001-8633-0913</orcidid></search><sort><creationdate>20220401</creationdate><title>An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region</title><author>James, Ananthu ; Dalal, Jyoti ; Kousi, Timokleia ; Vivacqua, Daniela ; Câmara, Daniel Cardoso Portela ; Dos Reis, Izabel Cristina ; Botero Mesa, Sara ; Ng’ambi, Wignston ; Ansobi, Papy ; Bianchi, Lucas M ; Lee, Theresa M ; Ogundiran, Opeayo ; Stoll, Beat ; Chimbetete, Cleophas ; Mboussou, Franck ; Impouma, Benido ; Hofer, Cristina Barroso ; Coelho, Flávio Codeço ; Keiser, Olivia ; Abbate, Jessica Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cross-Sectional Studies</topic><topic>cross-sectional survey</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>epidemiology</topic><topic>Fatalities</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Humans</topic><topic>mathematical modelling</topic><topic>Original Research</topic><topic>Pandemics</topic><topic>Per capita</topic><topic>Population density</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Tourism</topic><topic>World Health Organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Ananthu</creatorcontrib><creatorcontrib>Dalal, Jyoti</creatorcontrib><creatorcontrib>Kousi, Timokleia</creatorcontrib><creatorcontrib>Vivacqua, Daniela</creatorcontrib><creatorcontrib>Câmara, Daniel Cardoso Portela</creatorcontrib><creatorcontrib>Dos Reis, Izabel Cristina</creatorcontrib><creatorcontrib>Botero Mesa, Sara</creatorcontrib><creatorcontrib>Ng’ambi, Wignston</creatorcontrib><creatorcontrib>Ansobi, Papy</creatorcontrib><creatorcontrib>Bianchi, Lucas M</creatorcontrib><creatorcontrib>Lee, Theresa M</creatorcontrib><creatorcontrib>Ogundiran, Opeayo</creatorcontrib><creatorcontrib>Stoll, Beat</creatorcontrib><creatorcontrib>Chimbetete, Cleophas</creatorcontrib><creatorcontrib>Mboussou, Franck</creatorcontrib><creatorcontrib>Impouma, Benido</creatorcontrib><creatorcontrib>Hofer, Cristina Barroso</creatorcontrib><creatorcontrib>Coelho, Flávio Codeço</creatorcontrib><creatorcontrib>Keiser, Olivia</creatorcontrib><creatorcontrib>Abbate, Jessica Lee</creatorcontrib><collection>BMJ Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMJ global health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Ananthu</au><au>Dalal, Jyoti</au><au>Kousi, Timokleia</au><au>Vivacqua, Daniela</au><au>Câmara, Daniel Cardoso Portela</au><au>Dos Reis, Izabel Cristina</au><au>Botero Mesa, Sara</au><au>Ng’ambi, Wignston</au><au>Ansobi, Papy</au><au>Bianchi, Lucas M</au><au>Lee, Theresa M</au><au>Ogundiran, Opeayo</au><au>Stoll, Beat</au><au>Chimbetete, Cleophas</au><au>Mboussou, Franck</au><au>Impouma, Benido</au><au>Hofer, Cristina Barroso</au><au>Coelho, Flávio Codeço</au><au>Keiser, Olivia</au><au>Abbate, Jessica Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region</atitle><jtitle>BMJ global health</jtitle><stitle>BMJ Glob Health</stitle><stitle>BMJ Global Health</stitle><addtitle>BMJ Glob Health</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>e007295</spage><pages>e007295-</pages><issn>2059-7908</issn><eissn>2059-7908</eissn><abstract>During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p<0.001) and cumulative (p<0.001) attack rates, and lower CFRs (p=0.021). More urbanised countries also had higher attack rates (p<0.001 for both indicators). Countries applying more stringent early control policies experienced greater delay in detection of the first case (p<0.001), but the initial propagation of the virus was slower in relatively wealthy, touristic African countries (p=0.023). Careful and early implementation of strict government policies were likely pivotal to delaying the initial phase of the pandemic, but did not have much impact on other indicators of spread and severity. An over-reliance on disruptive containment measures in more resource-limited contexts is neither effective nor sustainable. We thus urge decision-makers to prioritise the reduction of resource-based health disparities, and surveillance and response capacities in particular, to ensure global resilience against future threats to public health and economic stability.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd</pub><pmid>35418411</pmid><doi>10.1136/bmjgh-2021-007295</doi><orcidid>https://orcid.org/0000-0002-5439-4477</orcidid><orcidid>https://orcid.org/0000-0002-5724-0502</orcidid><orcidid>https://orcid.org/0000-0003-2485-3334</orcidid><orcidid>https://orcid.org/0000-0001-8633-0913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7908 |
ispartof | BMJ global health, 2022-04, Vol.7 (4), p.e007295 |
issn | 2059-7908 2059-7908 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_302f48e24b1444318eee683193246c48 |
source | BMJ Open Access Journals; PubMed Central (Open Access) |
subjects | Coronaviruses COVID-19 Cross-Sectional Studies cross-sectional survey Disease transmission Epidemics epidemiology Fatalities GDP Gross Domestic Product Humans mathematical modelling Original Research Pandemics Per capita Population density Public health Regression analysis SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Statistical analysis Tourism World Health Organization |
title | An in-depth statistical analysis of the COVID-19 pandemic’s initial spread in the WHO African region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in-depth%20statistical%20analysis%20of%20the%20COVID-19%20pandemic%E2%80%99s%20initial%20spread%20in%20the%20WHO%20African%20region&rft.jtitle=BMJ%20global%20health&rft.au=James,%20Ananthu&rft.date=2022-04-01&rft.volume=7&rft.issue=4&rft.spage=e007295&rft.pages=e007295-&rft.issn=2059-7908&rft.eissn=2059-7908&rft_id=info:doi/10.1136/bmjgh-2021-007295&rft_dat=%3Cproquest_doaj_%3E2650253552%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b531t-61b2ac084f409e0dbb78b98f6f9b80baa9128c9de345c5b6d6470cfb46c3cc863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2650009008&rft_id=info:pmid/35418411&rfr_iscdi=true |