Loading…
Surfing the Modeling of pos Taggers in Low-Resource Scenarios
The recent trend toward the application of deep structured techniques has revealed the limits of huge models in natural language processing. This has reawakened the interest in traditional machine learning algorithms, which have proved still to be competitive in certain contexts, particularly in low...
Saved in:
Published in: | Mathematics (Basel) 2022-10, Vol.10 (19), p.3526 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-e34fa574c58cd4771eab8f44bbf1b91491f7da2ec2368d18f3764be3afe56f123 |
container_end_page | |
container_issue | 19 |
container_start_page | 3526 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Vilares Ferro, Manuel Darriba Bilbao, Víctor M. Ribadas Pena, Francisco J. Graña Gil, Jorge |
description | The recent trend toward the application of deep structured techniques has revealed the limits of huge models in natural language processing. This has reawakened the interest in traditional machine learning algorithms, which have proved still to be competitive in certain contexts, particularly in low-resource settings. In parallel, model selection has become an essential task to boost performance at reasonable cost, even more so when we talk about processes involving domains where the training and/or computational resources are scarce. Against this backdrop, we evaluate the early estimation of learning curves as a practical mechanism for selecting the most appropriate model in scenarios characterized by the use of non-deep learners in resource-lean settings. On the basis of a formal approximation model previously evaluated under conditions of wide availability of training and validation resources, we study the reliability of such an approach in a different and much more demanding operational environment. Using as a case study the generation of pos taggers for Galician, a language belonging to the Western Ibero-Romance group, the experimental results are consistent with our expectations. |
doi_str_mv | 10.3390/math10193526 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_303d2def0fb24652b775a6d60293b6da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744753885</galeid><doaj_id>oai_doaj_org_article_303d2def0fb24652b775a6d60293b6da</doaj_id><sourcerecordid>A744753885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e34fa574c58cd4771eab8f44bbf1b91491f7da2ec2368d18f3764be3afe56f123</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkTBUnvzByx4dWtem-wePJTio1ARbD2HbDLZprSbmmwR_72pK-LMYV7f9zHDZNk1RlNKa3S3V_0GI1zTkvCzbEQIEYVIg_N_-WU2iXGLktWYVqweZferY7Cua_N-A_mLN7A7Fd7mBx_ztWpbCDF3Xb70n8UbRH8MGvKVhk4F5-NVdmHVLsLkN46z98eH9fy5WL4-LeazZaEpp30BlFlVCqbLShsmBAbVVJaxprG4qTGrsRVGEdCE8srgylLBWQNUWSi5xYSOs8Wga7zaykNwexW-pFdO_jR8aKUKvdM7kBRRQwxYZBvCeEkaIUrFDUekpg03KmndDFqH4D-OEHu5TVd1aX1JBGGEc4JQQk0HVKuSqOus74PSyQ3snfYdWJf6M8GYKGlVlYlwOxB08DEGsH9rYiRPD5L_H0S_AZGmgYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724266200</pqid></control><display><type>article</type><title>Surfing the Modeling of pos Taggers in Low-Resource Scenarios</title><source>Publicly Available Content Database</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Vilares Ferro, Manuel ; Darriba Bilbao, Víctor M. ; Ribadas Pena, Francisco J. ; Graña Gil, Jorge</creator><creatorcontrib>Vilares Ferro, Manuel ; Darriba Bilbao, Víctor M. ; Ribadas Pena, Francisco J. ; Graña Gil, Jorge</creatorcontrib><description>The recent trend toward the application of deep structured techniques has revealed the limits of huge models in natural language processing. This has reawakened the interest in traditional machine learning algorithms, which have proved still to be competitive in certain contexts, particularly in low-resource settings. In parallel, model selection has become an essential task to boost performance at reasonable cost, even more so when we talk about processes involving domains where the training and/or computational resources are scarce. Against this backdrop, we evaluate the early estimation of learning curves as a practical mechanism for selecting the most appropriate model in scenarios characterized by the use of non-deep learners in resource-lean settings. On the basis of a formal approximation model previously evaluated under conditions of wide availability of training and validation resources, we study the reliability of such an approach in a different and much more demanding operational environment. Using as a case study the generation of pos taggers for Galician, a language belonging to the Western Ibero-Romance group, the experimental results are consistent with our expectations.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10193526</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Case studies ; Computational linguistics ; Data mining ; Decision making ; Galician ; Language processing ; Learning curves ; low-resource scenarios ; Machine learning ; Machine translation ; Methods ; model selection ; Natural language interfaces ; Natural language processing ; non-deep machine learning ; pos taggers ; Power ; Semantics ; stopping criteria ; Surfing ; Text categorization ; Training ; Word sense disambiguation</subject><ispartof>Mathematics (Basel), 2022-10, Vol.10 (19), p.3526</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-e34fa574c58cd4771eab8f44bbf1b91491f7da2ec2368d18f3764be3afe56f123</cites><orcidid>0000-0002-9000-4608 ; 0000-0003-3414-6211 ; 0000-0001-5566-1699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724266200/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724266200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,12842,25744,27915,27916,31260,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Vilares Ferro, Manuel</creatorcontrib><creatorcontrib>Darriba Bilbao, Víctor M.</creatorcontrib><creatorcontrib>Ribadas Pena, Francisco J.</creatorcontrib><creatorcontrib>Graña Gil, Jorge</creatorcontrib><title>Surfing the Modeling of pos Taggers in Low-Resource Scenarios</title><title>Mathematics (Basel)</title><description>The recent trend toward the application of deep structured techniques has revealed the limits of huge models in natural language processing. This has reawakened the interest in traditional machine learning algorithms, which have proved still to be competitive in certain contexts, particularly in low-resource settings. In parallel, model selection has become an essential task to boost performance at reasonable cost, even more so when we talk about processes involving domains where the training and/or computational resources are scarce. Against this backdrop, we evaluate the early estimation of learning curves as a practical mechanism for selecting the most appropriate model in scenarios characterized by the use of non-deep learners in resource-lean settings. On the basis of a formal approximation model previously evaluated under conditions of wide availability of training and validation resources, we study the reliability of such an approach in a different and much more demanding operational environment. Using as a case study the generation of pos taggers for Galician, a language belonging to the Western Ibero-Romance group, the experimental results are consistent with our expectations.</description><subject>Algorithms</subject><subject>Case studies</subject><subject>Computational linguistics</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Galician</subject><subject>Language processing</subject><subject>Learning curves</subject><subject>low-resource scenarios</subject><subject>Machine learning</subject><subject>Machine translation</subject><subject>Methods</subject><subject>model selection</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>non-deep machine learning</subject><subject>pos taggers</subject><subject>Power</subject><subject>Semantics</subject><subject>stopping criteria</subject><subject>Surfing</subject><subject>Text categorization</subject><subject>Training</subject><subject>Word sense disambiguation</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkTBUnvzByx4dWtem-wePJTio1ARbD2HbDLZprSbmmwR_72pK-LMYV7f9zHDZNk1RlNKa3S3V_0GI1zTkvCzbEQIEYVIg_N_-WU2iXGLktWYVqweZferY7Cua_N-A_mLN7A7Fd7mBx_ztWpbCDF3Xb70n8UbRH8MGvKVhk4F5-NVdmHVLsLkN46z98eH9fy5WL4-LeazZaEpp30BlFlVCqbLShsmBAbVVJaxprG4qTGrsRVGEdCE8srgylLBWQNUWSi5xYSOs8Wga7zaykNwexW-pFdO_jR8aKUKvdM7kBRRQwxYZBvCeEkaIUrFDUekpg03KmndDFqH4D-OEHu5TVd1aX1JBGGEc4JQQk0HVKuSqOus74PSyQ3snfYdWJf6M8GYKGlVlYlwOxB08DEGsH9rYiRPD5L_H0S_AZGmgYw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Vilares Ferro, Manuel</creator><creator>Darriba Bilbao, Víctor M.</creator><creator>Ribadas Pena, Francisco J.</creator><creator>Graña Gil, Jorge</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7T9</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9000-4608</orcidid><orcidid>https://orcid.org/0000-0003-3414-6211</orcidid><orcidid>https://orcid.org/0000-0001-5566-1699</orcidid></search><sort><creationdate>20221001</creationdate><title>Surfing the Modeling of pos Taggers in Low-Resource Scenarios</title><author>Vilares Ferro, Manuel ; Darriba Bilbao, Víctor M. ; Ribadas Pena, Francisco J. ; Graña Gil, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e34fa574c58cd4771eab8f44bbf1b91491f7da2ec2368d18f3764be3afe56f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Case studies</topic><topic>Computational linguistics</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Galician</topic><topic>Language processing</topic><topic>Learning curves</topic><topic>low-resource scenarios</topic><topic>Machine learning</topic><topic>Machine translation</topic><topic>Methods</topic><topic>model selection</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>non-deep machine learning</topic><topic>pos taggers</topic><topic>Power</topic><topic>Semantics</topic><topic>stopping criteria</topic><topic>Surfing</topic><topic>Text categorization</topic><topic>Training</topic><topic>Word sense disambiguation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilares Ferro, Manuel</creatorcontrib><creatorcontrib>Darriba Bilbao, Víctor M.</creatorcontrib><creatorcontrib>Ribadas Pena, Francisco J.</creatorcontrib><creatorcontrib>Graña Gil, Jorge</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilares Ferro, Manuel</au><au>Darriba Bilbao, Víctor M.</au><au>Ribadas Pena, Francisco J.</au><au>Graña Gil, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfing the Modeling of pos Taggers in Low-Resource Scenarios</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>19</issue><spage>3526</spage><pages>3526-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The recent trend toward the application of deep structured techniques has revealed the limits of huge models in natural language processing. This has reawakened the interest in traditional machine learning algorithms, which have proved still to be competitive in certain contexts, particularly in low-resource settings. In parallel, model selection has become an essential task to boost performance at reasonable cost, even more so when we talk about processes involving domains where the training and/or computational resources are scarce. Against this backdrop, we evaluate the early estimation of learning curves as a practical mechanism for selecting the most appropriate model in scenarios characterized by the use of non-deep learners in resource-lean settings. On the basis of a formal approximation model previously evaluated under conditions of wide availability of training and validation resources, we study the reliability of such an approach in a different and much more demanding operational environment. Using as a case study the generation of pos taggers for Galician, a language belonging to the Western Ibero-Romance group, the experimental results are consistent with our expectations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10193526</doi><orcidid>https://orcid.org/0000-0002-9000-4608</orcidid><orcidid>https://orcid.org/0000-0003-3414-6211</orcidid><orcidid>https://orcid.org/0000-0001-5566-1699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-10, Vol.10 (19), p.3526 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_303d2def0fb24652b775a6d60293b6da |
source | Publicly Available Content Database; Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Algorithms Case studies Computational linguistics Data mining Decision making Galician Language processing Learning curves low-resource scenarios Machine learning Machine translation Methods model selection Natural language interfaces Natural language processing non-deep machine learning pos taggers Power Semantics stopping criteria Surfing Text categorization Training Word sense disambiguation |
title | Surfing the Modeling of pos Taggers in Low-Resource Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfing%20the%20Modeling%20of%20pos%20Taggers%20in%20Low-Resource%20Scenarios&rft.jtitle=Mathematics%20(Basel)&rft.au=Vilares%20Ferro,%20Manuel&rft.date=2022-10-01&rft.volume=10&rft.issue=19&rft.spage=3526&rft.pages=3526-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10193526&rft_dat=%3Cgale_doaj_%3EA744753885%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-e34fa574c58cd4771eab8f44bbf1b91491f7da2ec2368d18f3764be3afe56f123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724266200&rft_id=info:pmid/&rft_galeid=A744753885&rfr_iscdi=true |