Loading…
Ultrafast Multiphoton Thermionic Photoemission from Graphite
Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, whe...
Saved in:
Published in: | Physical review. X 2017-01, Vol.7 (1), p.011004, Article 011004 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 011004 |
container_title | Physical review. X |
container_volume | 7 |
creator | Tan, Shijing Argondizzo, Adam Wang, Cong Cui, Xuefeng Petek, Hrvoje |
description | Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition. |
doi_str_mv | 10.1103/PhysRevX.7.011004 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548</doaj_id><sourcerecordid>2550607916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_gLcFz1uTzd8FL1K0FioWacFbCEnWTdk2a5IK_famropzmZnH483wA-AawSlCEN-u2mN8tZ9vUz6FWYDkDIwqxGCJMRTn_-ZLMIlxC3MxiAjnI3C36VJQjYqpeD50yfWtT35frFsbds7vnS5WJ8XuXIx5L5rgd8U8qL51yV6Bi0Z10U5--hhsHh_Ws6dy-TJfzO6XpSY1S2VVV5pzonM1tTZc6Zoao6khhGGsudWsQshQiitrqCKQWAWpgFxgxRFu8Bgshlzj1Vb2we1UOEqvnPwWfHiXKiSnOysxZKTBNdIMaiK4EsowgQXHFhlDichZN0NWH_zHwcYkt_4Q9vl9WVGaufAasexCg0sHH2Owzd9VBOWJufxlLrkcmOMvVLp1TQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550607916</pqid></control><display><type>article</type><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><source>Publicly Available Content Database</source><creator>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</creator><creatorcontrib>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</creatorcontrib><description>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.7.011004</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absorption ; Chemical properties ; Conductors ; Coulomb potential ; Crystal lattices ; Diamonds ; Dipoles ; Electron gas ; Energy conversion ; Excitation ; Free electrons ; Graphene ; Graphite ; Heating ; Incandescence ; Interlayers ; Light ; Metalloids ; Phase transitions ; Photoelectric effect ; Photoelectric emission ; Photoelectricity ; Photons ; Photosynthesis ; Photovoltaic cells ; Scattering ; Solar cells ; Tunable lasers</subject><ispartof>Physical review. X, 2017-01, Vol.7 (1), p.011004, Article 011004</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</citedby><cites>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550607916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Tan, Shijing</creatorcontrib><creatorcontrib>Argondizzo, Adam</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Cui, Xuefeng</creatorcontrib><creatorcontrib>Petek, Hrvoje</creatorcontrib><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><title>Physical review. X</title><description>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</description><subject>Absorption</subject><subject>Chemical properties</subject><subject>Conductors</subject><subject>Coulomb potential</subject><subject>Crystal lattices</subject><subject>Diamonds</subject><subject>Dipoles</subject><subject>Electron gas</subject><subject>Energy conversion</subject><subject>Excitation</subject><subject>Free electrons</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heating</subject><subject>Incandescence</subject><subject>Interlayers</subject><subject>Light</subject><subject>Metalloids</subject><subject>Phase transitions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectricity</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Photovoltaic cells</subject><subject>Scattering</subject><subject>Solar cells</subject><subject>Tunable lasers</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_gLcFz1uTzd8FL1K0FioWacFbCEnWTdk2a5IK_famropzmZnH483wA-AawSlCEN-u2mN8tZ9vUz6FWYDkDIwqxGCJMRTn_-ZLMIlxC3MxiAjnI3C36VJQjYqpeD50yfWtT35frFsbds7vnS5WJ8XuXIx5L5rgd8U8qL51yV6Bi0Z10U5--hhsHh_Ws6dy-TJfzO6XpSY1S2VVV5pzonM1tTZc6Zoao6khhGGsudWsQshQiitrqCKQWAWpgFxgxRFu8Bgshlzj1Vb2we1UOEqvnPwWfHiXKiSnOysxZKTBNdIMaiK4EsowgQXHFhlDichZN0NWH_zHwcYkt_4Q9vl9WVGaufAasexCg0sHH2Owzd9VBOWJufxlLrkcmOMvVLp1TQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Tan, Shijing</creator><creator>Argondizzo, Adam</creator><creator>Wang, Cong</creator><creator>Cui, Xuefeng</creator><creator>Petek, Hrvoje</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170117</creationdate><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><author>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Chemical properties</topic><topic>Conductors</topic><topic>Coulomb potential</topic><topic>Crystal lattices</topic><topic>Diamonds</topic><topic>Dipoles</topic><topic>Electron gas</topic><topic>Energy conversion</topic><topic>Excitation</topic><topic>Free electrons</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heating</topic><topic>Incandescence</topic><topic>Interlayers</topic><topic>Light</topic><topic>Metalloids</topic><topic>Phase transitions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectricity</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Photovoltaic cells</topic><topic>Scattering</topic><topic>Solar cells</topic><topic>Tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shijing</creatorcontrib><creatorcontrib>Argondizzo, Adam</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Cui, Xuefeng</creatorcontrib><creatorcontrib>Petek, Hrvoje</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shijing</au><au>Argondizzo, Adam</au><au>Wang, Cong</au><au>Cui, Xuefeng</au><au>Petek, Hrvoje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Multiphoton Thermionic Photoemission from Graphite</atitle><jtitle>Physical review. X</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>011004</spage><pages>011004-</pages><artnum>011004</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.7.011004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2017-01, Vol.7 (1), p.011004, Article 011004 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548 |
source | Publicly Available Content Database |
subjects | Absorption Chemical properties Conductors Coulomb potential Crystal lattices Diamonds Dipoles Electron gas Energy conversion Excitation Free electrons Graphene Graphite Heating Incandescence Interlayers Light Metalloids Phase transitions Photoelectric effect Photoelectric emission Photoelectricity Photons Photosynthesis Photovoltaic cells Scattering Solar cells Tunable lasers |
title | Ultrafast Multiphoton Thermionic Photoemission from Graphite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Multiphoton%20Thermionic%20Photoemission%20from%20Graphite&rft.jtitle=Physical%20review.%20X&rft.au=Tan,%20Shijing&rft.date=2017-01-17&rft.volume=7&rft.issue=1&rft.spage=011004&rft.pages=011004-&rft.artnum=011004&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.7.011004&rft_dat=%3Cproquest_doaj_%3E2550607916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550607916&rft_id=info:pmid/&rfr_iscdi=true |