Loading…

Ultrafast Multiphoton Thermionic Photoemission from Graphite

Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, whe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2017-01, Vol.7 (1), p.011004, Article 011004
Main Authors: Tan, Shijing, Argondizzo, Adam, Wang, Cong, Cui, Xuefeng, Petek, Hrvoje
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3
cites cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3
container_end_page
container_issue 1
container_start_page 011004
container_title Physical review. X
container_volume 7
creator Tan, Shijing
Argondizzo, Adam
Wang, Cong
Cui, Xuefeng
Petek, Hrvoje
description Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.
doi_str_mv 10.1103/PhysRevX.7.011004
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548</doaj_id><sourcerecordid>2550607916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_gLcFz1uTzd8FL1K0FioWacFbCEnWTdk2a5IK_famropzmZnH483wA-AawSlCEN-u2mN8tZ9vUz6FWYDkDIwqxGCJMRTn_-ZLMIlxC3MxiAjnI3C36VJQjYqpeD50yfWtT35frFsbds7vnS5WJ8XuXIx5L5rgd8U8qL51yV6Bi0Z10U5--hhsHh_Ws6dy-TJfzO6XpSY1S2VVV5pzonM1tTZc6Zoao6khhGGsudWsQshQiitrqCKQWAWpgFxgxRFu8Bgshlzj1Vb2we1UOEqvnPwWfHiXKiSnOysxZKTBNdIMaiK4EsowgQXHFhlDichZN0NWH_zHwcYkt_4Q9vl9WVGaufAasexCg0sHH2Owzd9VBOWJufxlLrkcmOMvVLp1TQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550607916</pqid></control><display><type>article</type><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><source>Publicly Available Content Database</source><creator>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</creator><creatorcontrib>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</creatorcontrib><description>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.7.011004</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absorption ; Chemical properties ; Conductors ; Coulomb potential ; Crystal lattices ; Diamonds ; Dipoles ; Electron gas ; Energy conversion ; Excitation ; Free electrons ; Graphene ; Graphite ; Heating ; Incandescence ; Interlayers ; Light ; Metalloids ; Phase transitions ; Photoelectric effect ; Photoelectric emission ; Photoelectricity ; Photons ; Photosynthesis ; Photovoltaic cells ; Scattering ; Solar cells ; Tunable lasers</subject><ispartof>Physical review. X, 2017-01, Vol.7 (1), p.011004, Article 011004</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</citedby><cites>FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550607916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Tan, Shijing</creatorcontrib><creatorcontrib>Argondizzo, Adam</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Cui, Xuefeng</creatorcontrib><creatorcontrib>Petek, Hrvoje</creatorcontrib><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><title>Physical review. X</title><description>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</description><subject>Absorption</subject><subject>Chemical properties</subject><subject>Conductors</subject><subject>Coulomb potential</subject><subject>Crystal lattices</subject><subject>Diamonds</subject><subject>Dipoles</subject><subject>Electron gas</subject><subject>Energy conversion</subject><subject>Excitation</subject><subject>Free electrons</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heating</subject><subject>Incandescence</subject><subject>Interlayers</subject><subject>Light</subject><subject>Metalloids</subject><subject>Phase transitions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectricity</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Photovoltaic cells</subject><subject>Scattering</subject><subject>Solar cells</subject><subject>Tunable lasers</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_gLcFz1uTzd8FL1K0FioWacFbCEnWTdk2a5IK_famropzmZnH483wA-AawSlCEN-u2mN8tZ9vUz6FWYDkDIwqxGCJMRTn_-ZLMIlxC3MxiAjnI3C36VJQjYqpeD50yfWtT35frFsbds7vnS5WJ8XuXIx5L5rgd8U8qL51yV6Bi0Z10U5--hhsHh_Ws6dy-TJfzO6XpSY1S2VVV5pzonM1tTZc6Zoao6khhGGsudWsQshQiitrqCKQWAWpgFxgxRFu8Bgshlzj1Vb2we1UOEqvnPwWfHiXKiSnOysxZKTBNdIMaiK4EsowgQXHFhlDichZN0NWH_zHwcYkt_4Q9vl9WVGaufAasexCg0sHH2Owzd9VBOWJufxlLrkcmOMvVLp1TQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Tan, Shijing</creator><creator>Argondizzo, Adam</creator><creator>Wang, Cong</creator><creator>Cui, Xuefeng</creator><creator>Petek, Hrvoje</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170117</creationdate><title>Ultrafast Multiphoton Thermionic Photoemission from Graphite</title><author>Tan, Shijing ; Argondizzo, Adam ; Wang, Cong ; Cui, Xuefeng ; Petek, Hrvoje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Chemical properties</topic><topic>Conductors</topic><topic>Coulomb potential</topic><topic>Crystal lattices</topic><topic>Diamonds</topic><topic>Dipoles</topic><topic>Electron gas</topic><topic>Energy conversion</topic><topic>Excitation</topic><topic>Free electrons</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heating</topic><topic>Incandescence</topic><topic>Interlayers</topic><topic>Light</topic><topic>Metalloids</topic><topic>Phase transitions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectricity</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Photovoltaic cells</topic><topic>Scattering</topic><topic>Solar cells</topic><topic>Tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shijing</creatorcontrib><creatorcontrib>Argondizzo, Adam</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Cui, Xuefeng</creatorcontrib><creatorcontrib>Petek, Hrvoje</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shijing</au><au>Argondizzo, Adam</au><au>Wang, Cong</au><au>Cui, Xuefeng</au><au>Petek, Hrvoje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Multiphoton Thermionic Photoemission from Graphite</atitle><jtitle>Physical review. X</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>011004</spage><pages>011004-</pages><artnum>011004</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.7.011004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2017-01, Vol.7 (1), p.011004, Article 011004
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3064f391c60c487a8ad683873e1dd548
source Publicly Available Content Database
subjects Absorption
Chemical properties
Conductors
Coulomb potential
Crystal lattices
Diamonds
Dipoles
Electron gas
Energy conversion
Excitation
Free electrons
Graphene
Graphite
Heating
Incandescence
Interlayers
Light
Metalloids
Phase transitions
Photoelectric effect
Photoelectric emission
Photoelectricity
Photons
Photosynthesis
Photovoltaic cells
Scattering
Solar cells
Tunable lasers
title Ultrafast Multiphoton Thermionic Photoemission from Graphite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Multiphoton%20Thermionic%20Photoemission%20from%20Graphite&rft.jtitle=Physical%20review.%20X&rft.au=Tan,%20Shijing&rft.date=2017-01-17&rft.volume=7&rft.issue=1&rft.spage=011004&rft.pages=011004-&rft.artnum=011004&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.7.011004&rft_dat=%3Cproquest_doaj_%3E2550607916%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-292c774ccccf9cd7ac95ddc5d44633c7ec6211d5532ed5a404ea0580783a713f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550607916&rft_id=info:pmid/&rfr_iscdi=true