Loading…

Effects of Nutrient Content and Nitrogen to Phosphorous Ratio on the Growth, Nutrient Removal and Desalination Properties of the Green Alga Coelastrum morus on a Laboratory Scale

In wastewater, nutrient concentrations and salinity vary substantially, however, the optimal N:P ratio for the treatment using microalgae is not well described. In this study, the effects of higher and lower nitrate and phosphate contents and N:P ratios on growth, nutrient removal ability and haloto...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-04, Vol.14 (8), p.2112
Main Authors: Figler, Aida, Márton, Kamilla, B-Béres, Viktória, Bácsi, István
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In wastewater, nutrient concentrations and salinity vary substantially, however, the optimal N:P ratio for the treatment using microalgae is not well described. In this study, the effects of higher and lower nitrate and phosphate contents and N:P ratios on growth, nutrient removal ability and halotolerance of the common green alga Coelastrum morus were investigated in model solutions. The results suggest that high nitrate content (above 100 mg L−1) with a similarly high phosphate concentration (resulting low N:P ratio) is not favorable for growth. The studied isolate can be considered as a halotolerant species, showing remarkable growth up to 1000 mg L−1 NaCl and it seems that despite the negative effects on growth, higher nutrient content contributes to higher halotolerance. A significant amount of nitrate removal was observed in media with different nutrient contents and N:P ratios with different salt concentrations. High N:P ratios favor phosphate removal, which is more inhibited by increasing NaCl concentration than nitrate uptake. Overall, with a relatively higher nutrient content and a favorable (5 or higher) N:P ratio, a common green algal species such as C. morus could be a promising candidate next to species from the Chlorellaceae and Scenedesmaceae families.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14082112