Loading…

LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate

Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic an...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-01, Vol.12 (1), p.626-626, Article 626
Main Authors: Jin, Run, Klasfeld, Samantha, Zhu, Yang, Fernandez Garcia, Meilin, Xiao, Jun, Han, Soon-Ki, Konkol, Adam, Wagner, Doris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83
cites cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83
container_end_page 626
container_issue 1
container_start_page 626
container_title Nature communications
container_volume 12
creator Jin, Run
Klasfeld, Samantha
Zhu, Yang
Fernandez Garcia, Meilin
Xiao, Jun
Han, Soon-Ki
Konkol, Adam
Wagner, Doris
description Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 ( AP1 ), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1 . Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor. Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.
doi_str_mv 10.1038/s41467-020-20883-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727</doaj_id><sourcerecordid>2484292289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiNERau2L8ACWWLDJsWXiS8bpKpqaaUjsSlIrCzHsYOPkjjYOVS8PT5NKS2LemNr5p9v7PFfVW8JPiOYyY8ZCHBRY4priqVk9d2r6ohiIDURlL1-cj6sTnPe4rKYIhLgTXXIWINBKHxUfdtcnl99RyEjg-YQJ-cSWpKZsk1hXkoAeWOXmJCZOjQE66bsMrJuGFByc4p9MuMYph4tEfkhJjOUgsWdVAfeDNmdPuzH1dery9uL63rz5fPNxfmmthzzpRYGWo6lJV3HseKtYY3yxAMwQT1tgHDCW8m59bKzvhNWgm1YQ11jXae8ZMfVzcrtotnqOYXRpN86mqDvAzH12qQl2MFpho2lxtCWEgYgeEtBgWxFWxpRQUVhfVpZ864dXVeeWgYxPIM-z0zhh-7jLy0kYMWgAD48AFL8uXN50WPI-1GZycVd1hQkUEWpVEX6_j_pNu7SVEa1V2GllOSkqOiqsinmnJx_vAzBeu8CvbpAFxfoexfou1L07ukzHkv-_nkRsFWQS2rqXfrX-wXsH-LrvQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480999861</pqid></control><display><type>article</type><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</creator><creatorcontrib>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</creatorcontrib><description>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 ( AP1 ), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1 . Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor. Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20883-w</identifier><identifier>PMID: 33504790</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/15 ; 38/39 ; 38/91 ; 631/136 ; 631/208/176 ; 631/208/200 ; 631/449 ; Activator protein 1 ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Base Sequence ; Binding Sites ; Cell fate ; Cellular Reprogramming ; Chromatin ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA, Plant - metabolism ; Eukaryotes ; Flowers - cytology ; Flowers - genetics ; Gene Expression Regulation, Plant ; Histone H1 ; Histones ; Histones - metabolism ; Humanities and Social Sciences ; Loci ; Models, Biological ; multidisciplinary ; Nucleosomes - metabolism ; Plant Roots - metabolism ; Protein Binding ; Recruitment ; Science ; Science (multidisciplinary) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.626-626, Article 626</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</citedby><cites>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</cites><orcidid>0000-0002-8958-9266 ; 0000-0002-9589-1867 ; 0000-0003-0890-4680 ; 0000-0003-4656-2490 ; 0000-0002-0823-6929 ; 0000-0002-8745-9775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2480999861/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2480999861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33504790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Run</creatorcontrib><creatorcontrib>Klasfeld, Samantha</creatorcontrib><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Fernandez Garcia, Meilin</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Han, Soon-Ki</creatorcontrib><creatorcontrib>Konkol, Adam</creatorcontrib><creatorcontrib>Wagner, Doris</creatorcontrib><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 ( AP1 ), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1 . Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor. Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</description><subject>38/15</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136</subject><subject>631/208/176</subject><subject>631/208/200</subject><subject>631/449</subject><subject>Activator protein 1</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Cell fate</subject><subject>Cellular Reprogramming</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant - metabolism</subject><subject>Eukaryotes</subject><subject>Flowers - cytology</subject><subject>Flowers - genetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Histone H1</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Loci</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nucleosomes - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Protein Binding</subject><subject>Recruitment</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiNERau2L8ACWWLDJsWXiS8bpKpqaaUjsSlIrCzHsYOPkjjYOVS8PT5NKS2LemNr5p9v7PFfVW8JPiOYyY8ZCHBRY4priqVk9d2r6ohiIDURlL1-cj6sTnPe4rKYIhLgTXXIWINBKHxUfdtcnl99RyEjg-YQJ-cSWpKZsk1hXkoAeWOXmJCZOjQE66bsMrJuGFByc4p9MuMYph4tEfkhJjOUgsWdVAfeDNmdPuzH1dery9uL63rz5fPNxfmmthzzpRYGWo6lJV3HseKtYY3yxAMwQT1tgHDCW8m59bKzvhNWgm1YQ11jXae8ZMfVzcrtotnqOYXRpN86mqDvAzH12qQl2MFpho2lxtCWEgYgeEtBgWxFWxpRQUVhfVpZ864dXVeeWgYxPIM-z0zhh-7jLy0kYMWgAD48AFL8uXN50WPI-1GZycVd1hQkUEWpVEX6_j_pNu7SVEa1V2GllOSkqOiqsinmnJx_vAzBeu8CvbpAFxfoexfou1L07ukzHkv-_nkRsFWQS2rqXfrX-wXsH-LrvQw</recordid><startdate>20210127</startdate><enddate>20210127</enddate><creator>Jin, Run</creator><creator>Klasfeld, Samantha</creator><creator>Zhu, Yang</creator><creator>Fernandez Garcia, Meilin</creator><creator>Xiao, Jun</creator><creator>Han, Soon-Ki</creator><creator>Konkol, Adam</creator><creator>Wagner, Doris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8958-9266</orcidid><orcidid>https://orcid.org/0000-0002-9589-1867</orcidid><orcidid>https://orcid.org/0000-0003-0890-4680</orcidid><orcidid>https://orcid.org/0000-0003-4656-2490</orcidid><orcidid>https://orcid.org/0000-0002-0823-6929</orcidid><orcidid>https://orcid.org/0000-0002-8745-9775</orcidid></search><sort><creationdate>20210127</creationdate><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><author>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/15</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136</topic><topic>631/208/176</topic><topic>631/208/200</topic><topic>631/449</topic><topic>Activator protein 1</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Cell fate</topic><topic>Cellular Reprogramming</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant - metabolism</topic><topic>Eukaryotes</topic><topic>Flowers - cytology</topic><topic>Flowers - genetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Histone H1</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Loci</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nucleosomes - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Protein Binding</topic><topic>Recruitment</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Run</creatorcontrib><creatorcontrib>Klasfeld, Samantha</creatorcontrib><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Fernandez Garcia, Meilin</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Han, Soon-Ki</creatorcontrib><creatorcontrib>Konkol, Adam</creatorcontrib><creatorcontrib>Wagner, Doris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Run</au><au>Klasfeld, Samantha</au><au>Zhu, Yang</au><au>Fernandez Garcia, Meilin</au><au>Xiao, Jun</au><au>Han, Soon-Ki</au><au>Konkol, Adam</au><au>Wagner, Doris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-01-27</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>626</spage><epage>626</epage><pages>626-626</pages><artnum>626</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 ( AP1 ), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1 . Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor. Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33504790</pmid><doi>10.1038/s41467-020-20883-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8958-9266</orcidid><orcidid>https://orcid.org/0000-0002-9589-1867</orcidid><orcidid>https://orcid.org/0000-0003-0890-4680</orcidid><orcidid>https://orcid.org/0000-0003-4656-2490</orcidid><orcidid>https://orcid.org/0000-0002-0823-6929</orcidid><orcidid>https://orcid.org/0000-0002-8745-9775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-01, Vol.12 (1), p.626-626, Article 626
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727
source Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 38/15
38/39
38/91
631/136
631/208/176
631/208/200
631/449
Activator protein 1
Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Base Sequence
Binding Sites
Cell fate
Cellular Reprogramming
Chromatin
Chromatin - metabolism
Deoxyribonucleic acid
DNA
DNA, Plant - metabolism
Eukaryotes
Flowers - cytology
Flowers - genetics
Gene Expression Regulation, Plant
Histone H1
Histones
Histones - metabolism
Humanities and Social Sciences
Loci
Models, Biological
multidisciplinary
Nucleosomes - metabolism
Plant Roots - metabolism
Protein Binding
Recruitment
Science
Science (multidisciplinary)
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEAFY%20is%20a%20pioneer%20transcription%20factor%20and%20licenses%20cell%20reprogramming%20to%20floral%20fate&rft.jtitle=Nature%20communications&rft.au=Jin,%20Run&rft.date=2021-01-27&rft.volume=12&rft.issue=1&rft.spage=626&rft.epage=626&rft.pages=626-626&rft.artnum=626&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20883-w&rft_dat=%3Cproquest_doaj_%3E2484292289%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480999861&rft_id=info:pmid/33504790&rfr_iscdi=true