Loading…
LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate
Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic an...
Saved in:
Published in: | Nature communications 2021-01, Vol.12 (1), p.626-626, Article 626 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83 |
container_end_page | 626 |
container_issue | 1 |
container_start_page | 626 |
container_title | Nature communications |
container_volume | 12 |
creator | Jin, Run Klasfeld, Samantha Zhu, Yang Fernandez Garcia, Meilin Xiao, Jun Han, Soon-Ki Konkol, Adam Wagner, Doris |
description | Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor
APETALA1
(
AP1
), is a pioneer transcription factor. In vitro, LFY binds to the endogenous
AP1
target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including
AP1
. Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers. |
doi_str_mv | 10.1038/s41467-020-20883-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727</doaj_id><sourcerecordid>2484292289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiNERau2L8ACWWLDJsWXiS8bpKpqaaUjsSlIrCzHsYOPkjjYOVS8PT5NKS2LemNr5p9v7PFfVW8JPiOYyY8ZCHBRY4priqVk9d2r6ohiIDURlL1-cj6sTnPe4rKYIhLgTXXIWINBKHxUfdtcnl99RyEjg-YQJ-cSWpKZsk1hXkoAeWOXmJCZOjQE66bsMrJuGFByc4p9MuMYph4tEfkhJjOUgsWdVAfeDNmdPuzH1dery9uL63rz5fPNxfmmthzzpRYGWo6lJV3HseKtYY3yxAMwQT1tgHDCW8m59bKzvhNWgm1YQ11jXae8ZMfVzcrtotnqOYXRpN86mqDvAzH12qQl2MFpho2lxtCWEgYgeEtBgWxFWxpRQUVhfVpZ864dXVeeWgYxPIM-z0zhh-7jLy0kYMWgAD48AFL8uXN50WPI-1GZycVd1hQkUEWpVEX6_j_pNu7SVEa1V2GllOSkqOiqsinmnJx_vAzBeu8CvbpAFxfoexfou1L07ukzHkv-_nkRsFWQS2rqXfrX-wXsH-LrvQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480999861</pqid></control><display><type>article</type><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</creator><creatorcontrib>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</creatorcontrib><description>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor
APETALA1
(
AP1
), is a pioneer transcription factor. In vitro, LFY binds to the endogenous
AP1
target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including
AP1
. Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20883-w</identifier><identifier>PMID: 33504790</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/15 ; 38/39 ; 38/91 ; 631/136 ; 631/208/176 ; 631/208/200 ; 631/449 ; Activator protein 1 ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Base Sequence ; Binding Sites ; Cell fate ; Cellular Reprogramming ; Chromatin ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA, Plant - metabolism ; Eukaryotes ; Flowers - cytology ; Flowers - genetics ; Gene Expression Regulation, Plant ; Histone H1 ; Histones ; Histones - metabolism ; Humanities and Social Sciences ; Loci ; Models, Biological ; multidisciplinary ; Nucleosomes - metabolism ; Plant Roots - metabolism ; Protein Binding ; Recruitment ; Science ; Science (multidisciplinary) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.626-626, Article 626</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</citedby><cites>FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</cites><orcidid>0000-0002-8958-9266 ; 0000-0002-9589-1867 ; 0000-0003-0890-4680 ; 0000-0003-4656-2490 ; 0000-0002-0823-6929 ; 0000-0002-8745-9775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2480999861/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2480999861?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33504790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Run</creatorcontrib><creatorcontrib>Klasfeld, Samantha</creatorcontrib><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Fernandez Garcia, Meilin</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Han, Soon-Ki</creatorcontrib><creatorcontrib>Konkol, Adam</creatorcontrib><creatorcontrib>Wagner, Doris</creatorcontrib><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor
APETALA1
(
AP1
), is a pioneer transcription factor. In vitro, LFY binds to the endogenous
AP1
target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including
AP1
. Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</description><subject>38/15</subject><subject>38/39</subject><subject>38/91</subject><subject>631/136</subject><subject>631/208/176</subject><subject>631/208/200</subject><subject>631/449</subject><subject>Activator protein 1</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Cell fate</subject><subject>Cellular Reprogramming</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant - metabolism</subject><subject>Eukaryotes</subject><subject>Flowers - cytology</subject><subject>Flowers - genetics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Histone H1</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Loci</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nucleosomes - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Protein Binding</subject><subject>Recruitment</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiNERau2L8ACWWLDJsWXiS8bpKpqaaUjsSlIrCzHsYOPkjjYOVS8PT5NKS2LemNr5p9v7PFfVW8JPiOYyY8ZCHBRY4priqVk9d2r6ohiIDURlL1-cj6sTnPe4rKYIhLgTXXIWINBKHxUfdtcnl99RyEjg-YQJ-cSWpKZsk1hXkoAeWOXmJCZOjQE66bsMrJuGFByc4p9MuMYph4tEfkhJjOUgsWdVAfeDNmdPuzH1dery9uL63rz5fPNxfmmthzzpRYGWo6lJV3HseKtYY3yxAMwQT1tgHDCW8m59bKzvhNWgm1YQ11jXae8ZMfVzcrtotnqOYXRpN86mqDvAzH12qQl2MFpho2lxtCWEgYgeEtBgWxFWxpRQUVhfVpZ864dXVeeWgYxPIM-z0zhh-7jLy0kYMWgAD48AFL8uXN50WPI-1GZycVd1hQkUEWpVEX6_j_pNu7SVEa1V2GllOSkqOiqsinmnJx_vAzBeu8CvbpAFxfoexfou1L07ukzHkv-_nkRsFWQS2rqXfrX-wXsH-LrvQw</recordid><startdate>20210127</startdate><enddate>20210127</enddate><creator>Jin, Run</creator><creator>Klasfeld, Samantha</creator><creator>Zhu, Yang</creator><creator>Fernandez Garcia, Meilin</creator><creator>Xiao, Jun</creator><creator>Han, Soon-Ki</creator><creator>Konkol, Adam</creator><creator>Wagner, Doris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8958-9266</orcidid><orcidid>https://orcid.org/0000-0002-9589-1867</orcidid><orcidid>https://orcid.org/0000-0003-0890-4680</orcidid><orcidid>https://orcid.org/0000-0003-4656-2490</orcidid><orcidid>https://orcid.org/0000-0002-0823-6929</orcidid><orcidid>https://orcid.org/0000-0002-8745-9775</orcidid></search><sort><creationdate>20210127</creationdate><title>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</title><author>Jin, Run ; Klasfeld, Samantha ; Zhu, Yang ; Fernandez Garcia, Meilin ; Xiao, Jun ; Han, Soon-Ki ; Konkol, Adam ; Wagner, Doris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/15</topic><topic>38/39</topic><topic>38/91</topic><topic>631/136</topic><topic>631/208/176</topic><topic>631/208/200</topic><topic>631/449</topic><topic>Activator protein 1</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Cell fate</topic><topic>Cellular Reprogramming</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant - metabolism</topic><topic>Eukaryotes</topic><topic>Flowers - cytology</topic><topic>Flowers - genetics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Histone H1</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Loci</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nucleosomes - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Protein Binding</topic><topic>Recruitment</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Run</creatorcontrib><creatorcontrib>Klasfeld, Samantha</creatorcontrib><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Fernandez Garcia, Meilin</creatorcontrib><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Han, Soon-Ki</creatorcontrib><creatorcontrib>Konkol, Adam</creatorcontrib><creatorcontrib>Wagner, Doris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Run</au><au>Klasfeld, Samantha</au><au>Zhu, Yang</au><au>Fernandez Garcia, Meilin</au><au>Xiao, Jun</au><au>Han, Soon-Ki</au><au>Konkol, Adam</au><au>Wagner, Doris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-01-27</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>626</spage><epage>626</epage><pages>626-626</pages><artnum>626</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor
APETALA1
(
AP1
), is a pioneer transcription factor. In vitro, LFY binds to the endogenous
AP1
target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including
AP1
. Upon binding, LFY ‘unlocks’ chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Pioneer transcription factors access their DNA binding motifs in closed chromatin and often act in cell fate reprogramming. Here, Jin et al. present biochemical evidence for a pioneer factor in plants and show that LFY promotes floral cell fate and locally unlocks chromatin by displacing histone H1 and recruiting SWI/SNF chromatin remodelers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33504790</pmid><doi>10.1038/s41467-020-20883-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8958-9266</orcidid><orcidid>https://orcid.org/0000-0002-9589-1867</orcidid><orcidid>https://orcid.org/0000-0003-0890-4680</orcidid><orcidid>https://orcid.org/0000-0003-4656-2490</orcidid><orcidid>https://orcid.org/0000-0002-0823-6929</orcidid><orcidid>https://orcid.org/0000-0002-8745-9775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-01, Vol.12 (1), p.626-626, Article 626 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_30ac2aa2b2134476b24948b7bf252727 |
source | Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38/15 38/39 38/91 631/136 631/208/176 631/208/200 631/449 Activator protein 1 Arabidopsis - cytology Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Base Sequence Binding Sites Cell fate Cellular Reprogramming Chromatin Chromatin - metabolism Deoxyribonucleic acid DNA DNA, Plant - metabolism Eukaryotes Flowers - cytology Flowers - genetics Gene Expression Regulation, Plant Histone H1 Histones Histones - metabolism Humanities and Social Sciences Loci Models, Biological multidisciplinary Nucleosomes - metabolism Plant Roots - metabolism Protein Binding Recruitment Science Science (multidisciplinary) Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEAFY%20is%20a%20pioneer%20transcription%20factor%20and%20licenses%20cell%20reprogramming%20to%20floral%20fate&rft.jtitle=Nature%20communications&rft.au=Jin,%20Run&rft.date=2021-01-27&rft.volume=12&rft.issue=1&rft.spage=626&rft.epage=626&rft.pages=626-626&rft.artnum=626&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20883-w&rft_dat=%3Cproquest_doaj_%3E2484292289%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-7a4b608c1dd6096ba359f1f44372f2541616b866cf8dcfd7c84c5352e5ced9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480999861&rft_id=info:pmid/33504790&rfr_iscdi=true |