Loading…
Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data
Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computationa...
Saved in:
Published in: | BMC medical genomics 2019-12, Vol.12 (Suppl 10), p.189-189, Article 189 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393 |
container_end_page | 189 |
container_issue | Suppl 10 |
container_start_page | 189 |
container_title | BMC medical genomics |
container_volume | 12 |
creator | Hao, Jie Kim, Youngsoon Mallavarapu, Tejaswini Oh, Jung Hun Kang, Mingon |
description | Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis.
We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified.
Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet. |
doi_str_mv | 10.1186/s12920-019-0624-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30aecae4d42c4b49a2aea6df3e654e04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610325097</galeid><doaj_id>oai_doaj_org_article_30aecae4d42c4b49a2aea6df3e654e04</doaj_id><sourcerecordid>A610325097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEomXgB7BBkdiURYrfiTdIVVVgpEpIPNaW49wEDxl7sJOB-fe90ymlg1As2fL97rFzfIriJSXnlDbqbaZMM1IRqiuimKjYo-KU1lJWTa3F4wfrk-JZzitCFJGaPi1OOHZLTZrTYliGCdImwWTbEcoOYFMGmJMdcZp-xfSj7GMqnQ0OUpnntPVbrNlgx132uWx3pUeFIdnJh6EcIMS1d1jvSjf64B3CnZ3s8-JJb8cML-7mRfHt_dXXy4_V9acPy8uL68pJLaaKgeoEYx1VxAlS004SqImSvRU4gEkKdd9qxdtGy5a0DZFMsFZRKxtVc80XxfKg20W7Mpvk1zbtTLTe3G7ENBibJu9GMJxYcBYEHuhEK7RlFqzqeg5KCiACtd4dtDZzu4bOQZjQlyPR40rw380Qt0ZpVlMiUeDsTiDFnzPkyax9djCONkCcs2Gc45twrmtEX_-DruKc0OU9hU4w1Sjxlxos_oAPfcRz3V7UXChKOJPkVuv8PxR-HeDbxAC9x_2jhjdHDchM8Hsa7JyzWX75fMzSA-tSzDlBf-8HJWafSnNIpcFUmn0q8f6L4tVDI-87_sSQ3wA1qNvs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340726864</pqid></control><display><type>article</type><title>Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hao, Jie ; Kim, Youngsoon ; Mallavarapu, Tejaswini ; Oh, Jung Hun ; Kang, Mingon</creator><creatorcontrib>Hao, Jie ; Kim, Youngsoon ; Mallavarapu, Tejaswini ; Oh, Jung Hun ; Kang, Mingon</creatorcontrib><description>Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis.
We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified.
Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.</description><identifier>ISSN: 1755-8794</identifier><identifier>EISSN: 1755-8794</identifier><identifier>DOI: 10.1186/s12920-019-0624-2</identifier><identifier>PMID: 31865908</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Biochemistry ; Bioinformatics ; Brain cancer ; Breast cancer ; Cancer ; Cancer genetics ; Cancer patients ; Care and treatment ; Computer applications ; Cox-PASNet ; Deep learning ; Deep neural network ; Gene expression ; Genes ; Glioblastoma ; Glioblastoma multiforme ; Glioblastomas ; Gliomas ; Medical prognosis ; Neural coding ; Neural networks ; Optimization techniques ; Ovarian cancer ; Patients ; Sample size ; Survival ; Survival analysis</subject><ispartof>BMC medical genomics, 2019-12, Vol.12 (Suppl 10), p.189-189, Article 189</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393</citedby><cites>FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927105/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2340726864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31865908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Kim, Youngsoon</creatorcontrib><creatorcontrib>Mallavarapu, Tejaswini</creatorcontrib><creatorcontrib>Oh, Jung Hun</creatorcontrib><creatorcontrib>Kang, Mingon</creatorcontrib><title>Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data</title><title>BMC medical genomics</title><addtitle>BMC Med Genomics</addtitle><description>Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis.
We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified.
Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Brain cancer</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Cancer patients</subject><subject>Care and treatment</subject><subject>Computer applications</subject><subject>Cox-PASNet</subject><subject>Deep learning</subject><subject>Deep neural network</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glioblastoma</subject><subject>Glioblastoma multiforme</subject><subject>Glioblastomas</subject><subject>Gliomas</subject><subject>Medical prognosis</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Ovarian cancer</subject><subject>Patients</subject><subject>Sample size</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>1755-8794</issn><issn>1755-8794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEomXgB7BBkdiURYrfiTdIVVVgpEpIPNaW49wEDxl7sJOB-fe90ymlg1As2fL97rFzfIriJSXnlDbqbaZMM1IRqiuimKjYo-KU1lJWTa3F4wfrk-JZzitCFJGaPi1OOHZLTZrTYliGCdImwWTbEcoOYFMGmJMdcZp-xfSj7GMqnQ0OUpnntPVbrNlgx132uWx3pUeFIdnJh6EcIMS1d1jvSjf64B3CnZ3s8-JJb8cML-7mRfHt_dXXy4_V9acPy8uL68pJLaaKgeoEYx1VxAlS004SqImSvRU4gEkKdd9qxdtGy5a0DZFMsFZRKxtVc80XxfKg20W7Mpvk1zbtTLTe3G7ENBibJu9GMJxYcBYEHuhEK7RlFqzqeg5KCiACtd4dtDZzu4bOQZjQlyPR40rw380Qt0ZpVlMiUeDsTiDFnzPkyax9djCONkCcs2Gc45twrmtEX_-DruKc0OU9hU4w1Sjxlxos_oAPfcRz3V7UXChKOJPkVuv8PxR-HeDbxAC9x_2jhjdHDchM8Hsa7JyzWX75fMzSA-tSzDlBf-8HJWafSnNIpcFUmn0q8f6L4tVDI-87_sSQ3wA1qNvs</recordid><startdate>20191223</startdate><enddate>20191223</enddate><creator>Hao, Jie</creator><creator>Kim, Youngsoon</creator><creator>Mallavarapu, Tejaswini</creator><creator>Oh, Jung Hun</creator><creator>Kang, Mingon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20191223</creationdate><title>Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data</title><author>Hao, Jie ; Kim, Youngsoon ; Mallavarapu, Tejaswini ; Oh, Jung Hun ; Kang, Mingon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Brain cancer</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Cancer patients</topic><topic>Care and treatment</topic><topic>Computer applications</topic><topic>Cox-PASNet</topic><topic>Deep learning</topic><topic>Deep neural network</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glioblastoma</topic><topic>Glioblastoma multiforme</topic><topic>Glioblastomas</topic><topic>Gliomas</topic><topic>Medical prognosis</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Ovarian cancer</topic><topic>Patients</topic><topic>Sample size</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Kim, Youngsoon</creatorcontrib><creatorcontrib>Mallavarapu, Tejaswini</creatorcontrib><creatorcontrib>Oh, Jung Hun</creatorcontrib><creatorcontrib>Kang, Mingon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>BMC medical genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Jie</au><au>Kim, Youngsoon</au><au>Mallavarapu, Tejaswini</au><au>Oh, Jung Hun</au><au>Kang, Mingon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data</atitle><jtitle>BMC medical genomics</jtitle><addtitle>BMC Med Genomics</addtitle><date>2019-12-23</date><risdate>2019</risdate><volume>12</volume><issue>Suppl 10</issue><spage>189</spage><epage>189</epage><pages>189-189</pages><artnum>189</artnum><issn>1755-8794</issn><eissn>1755-8794</eissn><abstract>Understanding the complex biological mechanisms of cancer patient survival using genomic and clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying conventional survival analysis.
We propose a novel biologically interpretable pathway-based sparse deep neural network, named Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV) cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods. Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant prognostic factors of genes and biological pathways were identified.
Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31865908</pmid><doi>10.1186/s12920-019-0624-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-8794 |
ispartof | BMC medical genomics, 2019-12, Vol.12 (Suppl 10), p.189-189, Article 189 |
issn | 1755-8794 1755-8794 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_30aecae4d42c4b49a2aea6df3e654e04 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Artificial neural networks Back propagation Biochemistry Bioinformatics Brain cancer Breast cancer Cancer Cancer genetics Cancer patients Care and treatment Computer applications Cox-PASNet Deep learning Deep neural network Gene expression Genes Glioblastoma Glioblastoma multiforme Glioblastomas Gliomas Medical prognosis Neural coding Neural networks Optimization techniques Ovarian cancer Patients Sample size Survival Survival analysis |
title | Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20deep%20neural%20network%20for%20cancer%20survival%20analysis%20by%20integrating%20genomic%20and%20clinical%20data&rft.jtitle=BMC%20medical%20genomics&rft.au=Hao,%20Jie&rft.date=2019-12-23&rft.volume=12&rft.issue=Suppl%2010&rft.spage=189&rft.epage=189&rft.pages=189-189&rft.artnum=189&rft.issn=1755-8794&rft.eissn=1755-8794&rft_id=info:doi/10.1186/s12920-019-0624-2&rft_dat=%3Cgale_doaj_%3EA610325097%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-2e6d422d160c4071d50e7065fa4fa4e251e7fb963b895b0b805242b61a5867393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2340726864&rft_id=info:pmid/31865908&rft_galeid=A610325097&rfr_iscdi=true |