Loading…

Mg Doped Li–LiB Alloy with In Situ Formed Lithiophilic LiB Skeleton for Lithium Metal Batteries

High energy density lithium metal batteries (LMBs) are promising next‐generation energy storage devices. However, the uncontrollable dendrite growth and huge volume change limit their practical applications. Here, a new Mg doped Li–LiB alloy with in situ formed lithiophilic 3D LiB skeleton (hereinaf...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2020-03, Vol.7 (6), p.1902643-n/a
Main Authors: Wu, Chen, Huang, Haifeng, Lu, Weiyi, Wei, Zengxi, Ni, Xuyan, Sun, Fu, Qing, Piao, Liu, Zhijian, Ma, Jianmin, Wei, Weifeng, Chen, Libao, Yan, Chenglin, Mai, Liqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High energy density lithium metal batteries (LMBs) are promising next‐generation energy storage devices. However, the uncontrollable dendrite growth and huge volume change limit their practical applications. Here, a new Mg doped Li–LiB alloy with in situ formed lithiophilic 3D LiB skeleton (hereinafter called Li–B–Mg composite) is presented to suppress Li dendrite and mitigate volume change. The LiB skeleton exhibits superior lithiophilic and conductive characteristics, which contributes to the reduction of the local current density and homogenization of incoming Li+ flux. With the introduction of Mg, the composite achieves an ultralong lithium deposition/dissolution lifespan (500 h, at 0.5 mA cm−2) without short circuit in the symmetrical battery. In addition, the electrochemical performance is superior in full batteries assembled with LiCoO2 cathode and the manufactured composite. The currently proposed 3D Li–B–Mg composite anode may significantly propel the advancement of LMB technology from laboratory research to industrial commercialization. A Li–B–Mg composite with in situ formed 3D LiB fiber network shows a dendrite‐free morphology and less volume change during cycling. The symmetrical battery achieves a long and stable cycle lifespan of more than 500 h at 0.5 mA cm−2 due to the effect of skeleton and the addition of Mg. The full battery also displays improved electrochemical performance.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201902643