Loading…

Spatio‐temporal data integration for species distribution modelling in R‐INLA

Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time a...

Full description

Saved in:
Bibliographic Details
Published in:Methods in ecology and evolution 2024-07, Vol.15 (7), p.1221-1232
Main Authors: Seaton, Fiona M., Jarvis, Susan G., Henrys, Peter A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3776-78facd6223f350a1fb4c6548ab68db9bd2f1287daac9c808b0668fab7dcb26483
container_end_page 1232
container_issue 7
container_start_page 1221
container_title Methods in ecology and evolution
container_volume 15
creator Seaton, Fiona M.
Jarvis, Susan G.
Henrys, Peter A.
description Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time and space, and as such are clear candidates to benefit from model‐based integration of different data sources. However, spatio‐temporal models are highly computationally intensive and integrating different data sources can make this approach even more unfeasible to ecologists. Here we demonstrate how the R‐INLA methodology can be used for model‐based data integration for spatio‐temporally explicit modelling of species distribution change. We demonstrate that this method can be applied to both point and areal data with two contrasting case studies, one using the SPDE approach for modelling spatio‐temporal change in the Gatekeeper butterfly (Pyronia tithonus) across Great Britain and the second using a spatio‐temporal areal model to describe change in caddisfly (Trichoptera) populations across the River Thames catchment. We show that in the caddisfly case study integrating together different data sources led to greater understanding of the change in abundance across the River Thames both seasonally and over 5 years of data. However, in the butterfly case study moving to a spatio‐temporal context exacerbated differences between the data sources and resulted in no greater ecological insight into change in the Gatekeeper population. Our work provides a computationally feasible framework for spatio‐temporally explicit integration of data within SDMs and demonstrates both the potential benefits and the challenges in applying this methodology to real ecological data.
doi_str_mv 10.1111/2041-210X.14356
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30d47eaf5d6d4a53baaa066536098c18</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_30d47eaf5d6d4a53baaa066536098c18</doaj_id><sourcerecordid>3074869070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3776-78facd6223f350a1fb4c6548ab68db9bd2f1287daac9c808b0668fab7dcb26483</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsKhnrwue2yabbDZ7LKVqoSp-gbcw-diSsm3WZIv05k_wN_pLzHaleHMuM8y875MwkySXGI1wjHGGKB5mGL2NMCU5O0oGh87xn_o0uQhhhWIQXqKMDpLH5wZa674_v1qzbpyHOtXQQmo3rVn6brRJK-fT0BhlTUi1Da23crsfrJ02dW03yyhPnyJjfr-YnCcnFdTBXPzms-T1evYyvR0uHm7m08liqEhRsGHBK1CaZRmpSI4AV5IqllMOknEtS6mzCme80ACqVBxxiRiLFlloJTNGOTlL5j1XO1iJxts1-J1wYMW-4fxSgG-tqo0gSNPCQJVrpinkRAJAxOWEoZIr3LGuelbj3fvWhFas3NZv4vejt6CclahAUTXuVcq7ELypDq9iJLoziG7Rolu02J8hOljv-LC12f0nF3ezGemNP6APi2o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074869070</pqid></control><display><type>article</type><title>Spatio‐temporal data integration for species distribution modelling in R‐INLA</title><source>Wiley Online Library Open Access</source><creator>Seaton, Fiona M. ; Jarvis, Susan G. ; Henrys, Peter A.</creator><creatorcontrib>Seaton, Fiona M. ; Jarvis, Susan G. ; Henrys, Peter A.</creatorcontrib><description>Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time and space, and as such are clear candidates to benefit from model‐based integration of different data sources. However, spatio‐temporal models are highly computationally intensive and integrating different data sources can make this approach even more unfeasible to ecologists. Here we demonstrate how the R‐INLA methodology can be used for model‐based data integration for spatio‐temporally explicit modelling of species distribution change. We demonstrate that this method can be applied to both point and areal data with two contrasting case studies, one using the SPDE approach for modelling spatio‐temporal change in the Gatekeeper butterfly (Pyronia tithonus) across Great Britain and the second using a spatio‐temporal areal model to describe change in caddisfly (Trichoptera) populations across the River Thames catchment. We show that in the caddisfly case study integrating together different data sources led to greater understanding of the change in abundance across the River Thames both seasonally and over 5 years of data. However, in the butterfly case study moving to a spatio‐temporal context exacerbated differences between the data sources and resulted in no greater ecological insight into change in the Gatekeeper population. Our work provides a computationally feasible framework for spatio‐temporally explicit integration of data within SDMs and demonstrates both the potential benefits and the challenges in applying this methodology to real ecological data.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.14356</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Aquatic insects ; Biodiversity ; Case studies ; citizen science ; Data integration ; Data sources ; Geographical distribution ; integrated distribution models ; integrated nested laplace approximation ; Integration ; Modelling ; Population studies ; Rivers ; spatio‐temporal models ; species distribution models ; stochastic partial differential equation</subject><ispartof>Methods in ecology and evolution, 2024-07, Vol.15 (7), p.1221-1232</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3776-78facd6223f350a1fb4c6548ab68db9bd2f1287daac9c808b0668fab7dcb26483</cites><orcidid>0000-0002-2022-7451 ; 0000-0003-4758-1482 ; 0000-0001-5382-5135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.14356$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.14356$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Seaton, Fiona M.</creatorcontrib><creatorcontrib>Jarvis, Susan G.</creatorcontrib><creatorcontrib>Henrys, Peter A.</creatorcontrib><title>Spatio‐temporal data integration for species distribution modelling in R‐INLA</title><title>Methods in ecology and evolution</title><description>Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time and space, and as such are clear candidates to benefit from model‐based integration of different data sources. However, spatio‐temporal models are highly computationally intensive and integrating different data sources can make this approach even more unfeasible to ecologists. Here we demonstrate how the R‐INLA methodology can be used for model‐based data integration for spatio‐temporally explicit modelling of species distribution change. We demonstrate that this method can be applied to both point and areal data with two contrasting case studies, one using the SPDE approach for modelling spatio‐temporal change in the Gatekeeper butterfly (Pyronia tithonus) across Great Britain and the second using a spatio‐temporal areal model to describe change in caddisfly (Trichoptera) populations across the River Thames catchment. We show that in the caddisfly case study integrating together different data sources led to greater understanding of the change in abundance across the River Thames both seasonally and over 5 years of data. However, in the butterfly case study moving to a spatio‐temporal context exacerbated differences between the data sources and resulted in no greater ecological insight into change in the Gatekeeper population. Our work provides a computationally feasible framework for spatio‐temporally explicit integration of data within SDMs and demonstrates both the potential benefits and the challenges in applying this methodology to real ecological data.</description><subject>Aquatic insects</subject><subject>Biodiversity</subject><subject>Case studies</subject><subject>citizen science</subject><subject>Data integration</subject><subject>Data sources</subject><subject>Geographical distribution</subject><subject>integrated distribution models</subject><subject>integrated nested laplace approximation</subject><subject>Integration</subject><subject>Modelling</subject><subject>Population studies</subject><subject>Rivers</subject><subject>spatio‐temporal models</subject><subject>species distribution models</subject><subject>stochastic partial differential equation</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1LAzEQhhdRsKhnrwue2yabbDZ7LKVqoSp-gbcw-diSsm3WZIv05k_wN_pLzHaleHMuM8y875MwkySXGI1wjHGGKB5mGL2NMCU5O0oGh87xn_o0uQhhhWIQXqKMDpLH5wZa674_v1qzbpyHOtXQQmo3rVn6brRJK-fT0BhlTUi1Da23crsfrJ02dW03yyhPnyJjfr-YnCcnFdTBXPzms-T1evYyvR0uHm7m08liqEhRsGHBK1CaZRmpSI4AV5IqllMOknEtS6mzCme80ACqVBxxiRiLFlloJTNGOTlL5j1XO1iJxts1-J1wYMW-4fxSgG-tqo0gSNPCQJVrpinkRAJAxOWEoZIr3LGuelbj3fvWhFas3NZv4vejt6CclahAUTXuVcq7ELypDq9iJLoziG7Rolu02J8hOljv-LC12f0nF3ezGemNP6APi2o</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Seaton, Fiona M.</creator><creator>Jarvis, Susan G.</creator><creator>Henrys, Peter A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2022-7451</orcidid><orcidid>https://orcid.org/0000-0003-4758-1482</orcidid><orcidid>https://orcid.org/0000-0001-5382-5135</orcidid></search><sort><creationdate>202407</creationdate><title>Spatio‐temporal data integration for species distribution modelling in R‐INLA</title><author>Seaton, Fiona M. ; Jarvis, Susan G. ; Henrys, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3776-78facd6223f350a1fb4c6548ab68db9bd2f1287daac9c808b0668fab7dcb26483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic insects</topic><topic>Biodiversity</topic><topic>Case studies</topic><topic>citizen science</topic><topic>Data integration</topic><topic>Data sources</topic><topic>Geographical distribution</topic><topic>integrated distribution models</topic><topic>integrated nested laplace approximation</topic><topic>Integration</topic><topic>Modelling</topic><topic>Population studies</topic><topic>Rivers</topic><topic>spatio‐temporal models</topic><topic>species distribution models</topic><topic>stochastic partial differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seaton, Fiona M.</creatorcontrib><creatorcontrib>Jarvis, Susan G.</creatorcontrib><creatorcontrib>Henrys, Peter A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seaton, Fiona M.</au><au>Jarvis, Susan G.</au><au>Henrys, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio‐temporal data integration for species distribution modelling in R‐INLA</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2024-07</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>1221</spage><epage>1232</epage><pages>1221-1232</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time and space, and as such are clear candidates to benefit from model‐based integration of different data sources. However, spatio‐temporal models are highly computationally intensive and integrating different data sources can make this approach even more unfeasible to ecologists. Here we demonstrate how the R‐INLA methodology can be used for model‐based data integration for spatio‐temporally explicit modelling of species distribution change. We demonstrate that this method can be applied to both point and areal data with two contrasting case studies, one using the SPDE approach for modelling spatio‐temporal change in the Gatekeeper butterfly (Pyronia tithonus) across Great Britain and the second using a spatio‐temporal areal model to describe change in caddisfly (Trichoptera) populations across the River Thames catchment. We show that in the caddisfly case study integrating together different data sources led to greater understanding of the change in abundance across the River Thames both seasonally and over 5 years of data. However, in the butterfly case study moving to a spatio‐temporal context exacerbated differences between the data sources and resulted in no greater ecological insight into change in the Gatekeeper population. Our work provides a computationally feasible framework for spatio‐temporally explicit integration of data within SDMs and demonstrates both the potential benefits and the challenges in applying this methodology to real ecological data.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.14356</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2022-7451</orcidid><orcidid>https://orcid.org/0000-0003-4758-1482</orcidid><orcidid>https://orcid.org/0000-0001-5382-5135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2024-07, Vol.15 (7), p.1221-1232
issn 2041-210X
2041-210X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_30d47eaf5d6d4a53baaa066536098c18
source Wiley Online Library Open Access
subjects Aquatic insects
Biodiversity
Case studies
citizen science
Data integration
Data sources
Geographical distribution
integrated distribution models
integrated nested laplace approximation
Integration
Modelling
Population studies
Rivers
spatio‐temporal models
species distribution models
stochastic partial differential equation
title Spatio‐temporal data integration for species distribution modelling in R‐INLA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio%E2%80%90temporal%20data%20integration%20for%20species%20distribution%20modelling%20in%20R%E2%80%90INLA&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Seaton,%20Fiona%20M.&rft.date=2024-07&rft.volume=15&rft.issue=7&rft.spage=1221&rft.epage=1232&rft.pages=1221-1232&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.14356&rft_dat=%3Cproquest_doaj_%3E3074869070%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3776-78facd6223f350a1fb4c6548ab68db9bd2f1287daac9c808b0668fab7dcb26483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074869070&rft_id=info:pmid/&rfr_iscdi=true