Loading…
Some Properties of a Falling Function and Related Inequalities on Green’s Functions
Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor m...
Saved in:
Published in: | Symmetry (Basel) 2024-03, Vol.16 (3), p.337 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43 |
container_end_page | |
container_issue | 3 |
container_start_page | 337 |
container_title | Symmetry (Basel) |
container_volume | 16 |
creator | Mohammed, Pshtiwan Othman Agarwal, Ravi P. Yousif, Majeed A. Al-Sarairah, Eman Mahmood, Sarkhel Akbar Chorfi, Nejmeddine |
description | Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type. |
doi_str_mv | 10.3390/sym16030337 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30da7c4593994f3ebe49693767f19717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788254623</galeid><doaj_id>oai_doaj_org_article_30da7c4593994f3ebe49693767f19717</doaj_id><sourcerecordid>A788254623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</originalsourceid><addsrcrecordid>eNpNUctKBDEQHERBUU_-QMCjrCbTmTyOIq4uCIqP85DJdJYss8mazB68-Rv-nl9idETsPnTTVBXV3VV1wug5gKYX-W3NBAUKIHeqg5pKmCmt-e6_fr86znlFSzS04YIeVC9PcY3kIcUNptFjJtERQ-ZmGHxYkvk22NHHQEzoySMOZsSeLAK-bs3gJ3ggNwkxfL5_5D94Pqr2nBkyHv_Ww-plfv18dTu7u79ZXF3ezSwINs4AADWzDUragBIdNb1ATrmubS3AGkWZ7bhj0CnBalA9F5w5VXe9dazpOBxWi0m3j2bVbpJfm_TWRuPbn0FMy9aUteyALdDeSMsbDeUODrBDroUGKaRjWjJZtE4nrU2Kr1vMY7uK2xSK_cKloKiQTBTU-YRamiLqg4tjMrZkj2tvY0Dny_xSKlWXA9dQCGcTwaaYc0L3Z5PR9vtv7b-_wRfBkojw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003806716</pqid></control><display><type>article</type><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><source>Publicly Available Content Database</source><creator>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</creator><creatorcontrib>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</creatorcontrib><description>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym16030337</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Asymmetry ; Boundary value problems ; Calculus ; falling function ; Fractional calculus ; Green's functions ; Inequalities ; Lyapunov inequalities ; Mathematical analysis ; Riemann–Liouville operator ; Upper bounds</subject><ispartof>Symmetry (Basel), 2024-03, Vol.16 (3), p.337</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</cites><orcidid>0000-0002-0223-4711 ; 0000-0001-6837-8075 ; 0009-0001-0859-9762 ; 0000-0002-0206-3828 ; 0000-0003-0634-2370 ; 0000-0001-8833-6585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003806716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003806716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mohammed, Pshtiwan Othman</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><creatorcontrib>Yousif, Majeed A.</creatorcontrib><creatorcontrib>Al-Sarairah, Eman</creatorcontrib><creatorcontrib>Mahmood, Sarkhel Akbar</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><title>Symmetry (Basel)</title><description>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</description><subject>Asymmetry</subject><subject>Boundary value problems</subject><subject>Calculus</subject><subject>falling function</subject><subject>Fractional calculus</subject><subject>Green's functions</subject><subject>Inequalities</subject><subject>Lyapunov inequalities</subject><subject>Mathematical analysis</subject><subject>Riemann–Liouville operator</subject><subject>Upper bounds</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKBDEQHERBUU_-QMCjrCbTmTyOIq4uCIqP85DJdJYss8mazB68-Rv-nl9idETsPnTTVBXV3VV1wug5gKYX-W3NBAUKIHeqg5pKmCmt-e6_fr86znlFSzS04YIeVC9PcY3kIcUNptFjJtERQ-ZmGHxYkvk22NHHQEzoySMOZsSeLAK-bs3gJ3ggNwkxfL5_5D94Pqr2nBkyHv_Ww-plfv18dTu7u79ZXF3ezSwINs4AADWzDUragBIdNb1ATrmubS3AGkWZ7bhj0CnBalA9F5w5VXe9dazpOBxWi0m3j2bVbpJfm_TWRuPbn0FMy9aUteyALdDeSMsbDeUODrBDroUGKaRjWjJZtE4nrU2Kr1vMY7uK2xSK_cKloKiQTBTU-YRamiLqg4tjMrZkj2tvY0Dny_xSKlWXA9dQCGcTwaaYc0L3Z5PR9vtv7b-_wRfBkojw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mohammed, Pshtiwan Othman</creator><creator>Agarwal, Ravi P.</creator><creator>Yousif, Majeed A.</creator><creator>Al-Sarairah, Eman</creator><creator>Mahmood, Sarkhel Akbar</creator><creator>Chorfi, Nejmeddine</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0223-4711</orcidid><orcidid>https://orcid.org/0000-0001-6837-8075</orcidid><orcidid>https://orcid.org/0009-0001-0859-9762</orcidid><orcidid>https://orcid.org/0000-0002-0206-3828</orcidid><orcidid>https://orcid.org/0000-0003-0634-2370</orcidid><orcidid>https://orcid.org/0000-0001-8833-6585</orcidid></search><sort><creationdate>20240301</creationdate><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><author>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymmetry</topic><topic>Boundary value problems</topic><topic>Calculus</topic><topic>falling function</topic><topic>Fractional calculus</topic><topic>Green's functions</topic><topic>Inequalities</topic><topic>Lyapunov inequalities</topic><topic>Mathematical analysis</topic><topic>Riemann–Liouville operator</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Pshtiwan Othman</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><creatorcontrib>Yousif, Majeed A.</creatorcontrib><creatorcontrib>Al-Sarairah, Eman</creatorcontrib><creatorcontrib>Mahmood, Sarkhel Akbar</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Pshtiwan Othman</au><au>Agarwal, Ravi P.</au><au>Yousif, Majeed A.</au><au>Al-Sarairah, Eman</au><au>Mahmood, Sarkhel Akbar</au><au>Chorfi, Nejmeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>337</spage><pages>337-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym16030337</doi><orcidid>https://orcid.org/0000-0002-0223-4711</orcidid><orcidid>https://orcid.org/0000-0001-6837-8075</orcidid><orcidid>https://orcid.org/0009-0001-0859-9762</orcidid><orcidid>https://orcid.org/0000-0002-0206-3828</orcidid><orcidid>https://orcid.org/0000-0003-0634-2370</orcidid><orcidid>https://orcid.org/0000-0001-8833-6585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2024-03, Vol.16 (3), p.337 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_30da7c4593994f3ebe49693767f19717 |
source | Publicly Available Content Database |
subjects | Asymmetry Boundary value problems Calculus falling function Fractional calculus Green's functions Inequalities Lyapunov inequalities Mathematical analysis Riemann–Liouville operator Upper bounds |
title | Some Properties of a Falling Function and Related Inequalities on Green’s Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Properties%20of%20a%20Falling%20Function%20and%20Related%20Inequalities%20on%20Green%E2%80%99s%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Mohammed,%20Pshtiwan%20Othman&rft.date=2024-03-01&rft.volume=16&rft.issue=3&rft.spage=337&rft.pages=337-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym16030337&rft_dat=%3Cgale_doaj_%3EA788254623%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003806716&rft_id=info:pmid/&rft_galeid=A788254623&rfr_iscdi=true |