Loading…

Some Properties of a Falling Function and Related Inequalities on Green’s Functions

Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor m...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2024-03, Vol.16 (3), p.337
Main Authors: Mohammed, Pshtiwan Othman, Agarwal, Ravi P., Yousif, Majeed A., Al-Sarairah, Eman, Mahmood, Sarkhel Akbar, Chorfi, Nejmeddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43
container_end_page
container_issue 3
container_start_page 337
container_title Symmetry (Basel)
container_volume 16
creator Mohammed, Pshtiwan Othman
Agarwal, Ravi P.
Yousif, Majeed A.
Al-Sarairah, Eman
Mahmood, Sarkhel Akbar
Chorfi, Nejmeddine
description Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.
doi_str_mv 10.3390/sym16030337
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30da7c4593994f3ebe49693767f19717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788254623</galeid><doaj_id>oai_doaj_org_article_30da7c4593994f3ebe49693767f19717</doaj_id><sourcerecordid>A788254623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</originalsourceid><addsrcrecordid>eNpNUctKBDEQHERBUU_-QMCjrCbTmTyOIq4uCIqP85DJdJYss8mazB68-Rv-nl9idETsPnTTVBXV3VV1wug5gKYX-W3NBAUKIHeqg5pKmCmt-e6_fr86znlFSzS04YIeVC9PcY3kIcUNptFjJtERQ-ZmGHxYkvk22NHHQEzoySMOZsSeLAK-bs3gJ3ggNwkxfL5_5D94Pqr2nBkyHv_Ww-plfv18dTu7u79ZXF3ezSwINs4AADWzDUragBIdNb1ATrmubS3AGkWZ7bhj0CnBalA9F5w5VXe9dazpOBxWi0m3j2bVbpJfm_TWRuPbn0FMy9aUteyALdDeSMsbDeUODrBDroUGKaRjWjJZtE4nrU2Kr1vMY7uK2xSK_cKloKiQTBTU-YRamiLqg4tjMrZkj2tvY0Dny_xSKlWXA9dQCGcTwaaYc0L3Z5PR9vtv7b-_wRfBkojw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003806716</pqid></control><display><type>article</type><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><source>Publicly Available Content Database</source><creator>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</creator><creatorcontrib>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</creatorcontrib><description>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym16030337</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Asymmetry ; Boundary value problems ; Calculus ; falling function ; Fractional calculus ; Green's functions ; Inequalities ; Lyapunov inequalities ; Mathematical analysis ; Riemann–Liouville operator ; Upper bounds</subject><ispartof>Symmetry (Basel), 2024-03, Vol.16 (3), p.337</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</cites><orcidid>0000-0002-0223-4711 ; 0000-0001-6837-8075 ; 0009-0001-0859-9762 ; 0000-0002-0206-3828 ; 0000-0003-0634-2370 ; 0000-0001-8833-6585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003806716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003806716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mohammed, Pshtiwan Othman</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><creatorcontrib>Yousif, Majeed A.</creatorcontrib><creatorcontrib>Al-Sarairah, Eman</creatorcontrib><creatorcontrib>Mahmood, Sarkhel Akbar</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><title>Symmetry (Basel)</title><description>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</description><subject>Asymmetry</subject><subject>Boundary value problems</subject><subject>Calculus</subject><subject>falling function</subject><subject>Fractional calculus</subject><subject>Green's functions</subject><subject>Inequalities</subject><subject>Lyapunov inequalities</subject><subject>Mathematical analysis</subject><subject>Riemann–Liouville operator</subject><subject>Upper bounds</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKBDEQHERBUU_-QMCjrCbTmTyOIq4uCIqP85DJdJYss8mazB68-Rv-nl9idETsPnTTVBXV3VV1wug5gKYX-W3NBAUKIHeqg5pKmCmt-e6_fr86znlFSzS04YIeVC9PcY3kIcUNptFjJtERQ-ZmGHxYkvk22NHHQEzoySMOZsSeLAK-bs3gJ3ggNwkxfL5_5D94Pqr2nBkyHv_Ww-plfv18dTu7u79ZXF3ezSwINs4AADWzDUragBIdNb1ATrmubS3AGkWZ7bhj0CnBalA9F5w5VXe9dazpOBxWi0m3j2bVbpJfm_TWRuPbn0FMy9aUteyALdDeSMsbDeUODrBDroUGKaRjWjJZtE4nrU2Kr1vMY7uK2xSK_cKloKiQTBTU-YRamiLqg4tjMrZkj2tvY0Dny_xSKlWXA9dQCGcTwaaYc0L3Z5PR9vtv7b-_wRfBkojw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mohammed, Pshtiwan Othman</creator><creator>Agarwal, Ravi P.</creator><creator>Yousif, Majeed A.</creator><creator>Al-Sarairah, Eman</creator><creator>Mahmood, Sarkhel Akbar</creator><creator>Chorfi, Nejmeddine</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0223-4711</orcidid><orcidid>https://orcid.org/0000-0001-6837-8075</orcidid><orcidid>https://orcid.org/0009-0001-0859-9762</orcidid><orcidid>https://orcid.org/0000-0002-0206-3828</orcidid><orcidid>https://orcid.org/0000-0003-0634-2370</orcidid><orcidid>https://orcid.org/0000-0001-8833-6585</orcidid></search><sort><creationdate>20240301</creationdate><title>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</title><author>Mohammed, Pshtiwan Othman ; Agarwal, Ravi P. ; Yousif, Majeed A. ; Al-Sarairah, Eman ; Mahmood, Sarkhel Akbar ; Chorfi, Nejmeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymmetry</topic><topic>Boundary value problems</topic><topic>Calculus</topic><topic>falling function</topic><topic>Fractional calculus</topic><topic>Green's functions</topic><topic>Inequalities</topic><topic>Lyapunov inequalities</topic><topic>Mathematical analysis</topic><topic>Riemann–Liouville operator</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Pshtiwan Othman</creatorcontrib><creatorcontrib>Agarwal, Ravi P.</creatorcontrib><creatorcontrib>Yousif, Majeed A.</creatorcontrib><creatorcontrib>Al-Sarairah, Eman</creatorcontrib><creatorcontrib>Mahmood, Sarkhel Akbar</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Pshtiwan Othman</au><au>Agarwal, Ravi P.</au><au>Yousif, Majeed A.</au><au>Al-Sarairah, Eman</au><au>Mahmood, Sarkhel Akbar</au><au>Chorfi, Nejmeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Properties of a Falling Function and Related Inequalities on Green’s Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>337</spage><pages>337-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym16030337</doi><orcidid>https://orcid.org/0000-0002-0223-4711</orcidid><orcidid>https://orcid.org/0000-0001-6837-8075</orcidid><orcidid>https://orcid.org/0009-0001-0859-9762</orcidid><orcidid>https://orcid.org/0000-0002-0206-3828</orcidid><orcidid>https://orcid.org/0000-0003-0634-2370</orcidid><orcidid>https://orcid.org/0000-0001-8833-6585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2024-03, Vol.16 (3), p.337
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_30da7c4593994f3ebe49693767f19717
source Publicly Available Content Database
subjects Asymmetry
Boundary value problems
Calculus
falling function
Fractional calculus
Green's functions
Inequalities
Lyapunov inequalities
Mathematical analysis
Riemann–Liouville operator
Upper bounds
title Some Properties of a Falling Function and Related Inequalities on Green’s Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Properties%20of%20a%20Falling%20Function%20and%20Related%20Inequalities%20on%20Green%E2%80%99s%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Mohammed,%20Pshtiwan%20Othman&rft.date=2024-03-01&rft.volume=16&rft.issue=3&rft.spage=337&rft.pages=337-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym16030337&rft_dat=%3Cgale_doaj_%3EA788254623%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-333e91c5e705386b0ad6e40492c263ca801cb4f13b861238d4641f82bdcf15b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003806716&rft_id=info:pmid/&rft_galeid=A788254623&rfr_iscdi=true