Loading…
Primordial nucleosynthesis revisited via Trojan Horse Results
Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experiment...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01 |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201611709010 |