Loading…

Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism

The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of th...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-01, Vol.13 (1), p.504-504, Article 504
Main Authors: Masini, Débora, Kiehn, Ole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623
cites cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623
container_end_page 504
container_issue 1
container_start_page 504
container_title Nature communications
container_volume 13
creator Masini, Débora
Kiehn, Ole
description The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
doi_str_mv 10.1038/s41467-022-28075-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b</doaj_id><sourcerecordid>2623325756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkmKP7dh7QUIV0EqVuJSz5fhj8ZLYi51U4t8zuyml5YAP45H9zOvx6G2a15RcUMLU-8op72VHADpQRIqOP2tOgXDaUQns-aP8pDmvdUdwsQ1VnL9sTpggCkDJ08bemrL1s3etsXO8M3PMqc2hnaIbiompTX4pOdW2-DpnDO2YbZ4y5m1Ykj3yiE15qR6j82M91O9N-RFTzSnW6VXzIpix-vP7_az59vnT7eVVd_P1y_Xlx5vOCqnmjkLw0gYlHJfWEe4NbHoIfGAMqCMWBtnz3queyF6GwfRKYIYglQZMD-ysuV51XTY7vS9xMuWXzibq40EuW23KHO3oNSMBLBEOyzfcBKOoU8ZCoAqk9WJArQ-r1n4ZJu-sT3Mx4xPRpzcpftfbfKeV3NCNYCjw7l6g5J8LDk9PsVo_jiZ5nJUGbJiBkKJH9O0_6C4vJeGoDhQooRQ_ULBStuRaiw8PzVCiD5bQqyU0WkIfLaE5Fr15_I2Hkj8GQICtQMWrtPXl79v_kf0NGaXDEA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622858846</pqid></control><display><type>article</type><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Masini, Débora ; Kiehn, Ole</creator><creatorcontrib>Masini, Débora ; Kiehn, Ole</creatorcontrib><description>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28075-4</identifier><identifier>PMID: 35082287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/35 ; 631/1647/2198 ; 631/378/1689/1718 ; 631/378/2632 ; 64/110 ; 64/60 ; Animal models ; Animals ; Basal ganglia ; Brain diseases ; Brain stem ; Cell activation ; Central nervous system diseases ; Disease Models, Animal ; Dopamine ; Dopamine - metabolism ; Dopamine receptors ; Excitatory Amino Acid Agents - pharmacology ; Female ; Ganglia ; Genetics ; Glutamatergic transmission ; Humanities and Social Sciences ; Locomotion ; Male ; Mesencephalon ; Mesencephalon - drug effects ; Mesencephalon - metabolism ; Mesencephalon - physiopathology ; Mice ; Mice, Inbred C57BL ; Movement disorders ; multidisciplinary ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neurons - physiology ; Parkinson Disease - metabolism ; Parkinson Disease - physiopathology ; Parkinson's disease ; Parkinsonian Disorders - metabolism ; Parkinsonian Disorders - physiopathology ; Pedunculopontine tegmental nucleus ; Pedunculopontine Tegmental Nucleus - metabolism ; Pedunculopontine Tegmental Nucleus - physiopathology ; Recovery of function ; Restoration ; Science ; Science (multidisciplinary) ; Signs and symptoms ; γ-Aminobutyric acid</subject><ispartof>Nature communications, 2022-01, Vol.13 (1), p.504-504, Article 504</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</citedby><cites>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</cites><orcidid>0000-0002-5954-469X ; 0000-0003-1467-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622858846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622858846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35082287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masini, Débora</creatorcontrib><creatorcontrib>Kiehn, Ole</creatorcontrib><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</description><subject>14/19</subject><subject>14/35</subject><subject>631/1647/2198</subject><subject>631/378/1689/1718</subject><subject>631/378/2632</subject><subject>64/110</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Brain diseases</subject><subject>Brain stem</subject><subject>Cell activation</subject><subject>Central nervous system diseases</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Excitatory Amino Acid Agents - pharmacology</subject><subject>Female</subject><subject>Ganglia</subject><subject>Genetics</subject><subject>Glutamatergic transmission</subject><subject>Humanities and Social Sciences</subject><subject>Locomotion</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Mesencephalon - drug effects</subject><subject>Mesencephalon - metabolism</subject><subject>Mesencephalon - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Movement disorders</subject><subject>multidisciplinary</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Parkinsonian Disorders - physiopathology</subject><subject>Pedunculopontine tegmental nucleus</subject><subject>Pedunculopontine Tegmental Nucleus - metabolism</subject><subject>Pedunculopontine Tegmental Nucleus - physiopathology</subject><subject>Recovery of function</subject><subject>Restoration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signs and symptoms</subject><subject>γ-Aminobutyric acid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkmKP7dh7QUIV0EqVuJSz5fhj8ZLYi51U4t8zuyml5YAP45H9zOvx6G2a15RcUMLU-8op72VHADpQRIqOP2tOgXDaUQns-aP8pDmvdUdwsQ1VnL9sTpggCkDJ08bemrL1s3etsXO8M3PMqc2hnaIbiompTX4pOdW2-DpnDO2YbZ4y5m1Ykj3yiE15qR6j82M91O9N-RFTzSnW6VXzIpix-vP7_az59vnT7eVVd_P1y_Xlx5vOCqnmjkLw0gYlHJfWEe4NbHoIfGAMqCMWBtnz3queyF6GwfRKYIYglQZMD-ysuV51XTY7vS9xMuWXzibq40EuW23KHO3oNSMBLBEOyzfcBKOoU8ZCoAqk9WJArQ-r1n4ZJu-sT3Mx4xPRpzcpftfbfKeV3NCNYCjw7l6g5J8LDk9PsVo_jiZ5nJUGbJiBkKJH9O0_6C4vJeGoDhQooRQ_ULBStuRaiw8PzVCiD5bQqyU0WkIfLaE5Fr15_I2Hkj8GQICtQMWrtPXl79v_kf0NGaXDEA</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Masini, Débora</creator><creator>Kiehn, Ole</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5954-469X</orcidid><orcidid>https://orcid.org/0000-0003-1467-2388</orcidid></search><sort><creationdate>20220126</creationdate><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><author>Masini, Débora ; Kiehn, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/19</topic><topic>14/35</topic><topic>631/1647/2198</topic><topic>631/378/1689/1718</topic><topic>631/378/2632</topic><topic>64/110</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Brain diseases</topic><topic>Brain stem</topic><topic>Cell activation</topic><topic>Central nervous system diseases</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Excitatory Amino Acid Agents - pharmacology</topic><topic>Female</topic><topic>Ganglia</topic><topic>Genetics</topic><topic>Glutamatergic transmission</topic><topic>Humanities and Social Sciences</topic><topic>Locomotion</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Mesencephalon - drug effects</topic><topic>Mesencephalon - metabolism</topic><topic>Mesencephalon - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Movement disorders</topic><topic>multidisciplinary</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Parkinsonian Disorders - physiopathology</topic><topic>Pedunculopontine tegmental nucleus</topic><topic>Pedunculopontine Tegmental Nucleus - metabolism</topic><topic>Pedunculopontine Tegmental Nucleus - physiopathology</topic><topic>Recovery of function</topic><topic>Restoration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signs and symptoms</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masini, Débora</creatorcontrib><creatorcontrib>Kiehn, Ole</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masini, Débora</au><au>Kiehn, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-01-26</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>504</spage><epage>504</epage><pages>504-504</pages><artnum>504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35082287</pmid><doi>10.1038/s41467-022-28075-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5954-469X</orcidid><orcidid>https://orcid.org/0000-0003-1467-2388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-01, Vol.13 (1), p.504-504, Article 504
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/19
14/35
631/1647/2198
631/378/1689/1718
631/378/2632
64/110
64/60
Animal models
Animals
Basal ganglia
Brain diseases
Brain stem
Cell activation
Central nervous system diseases
Disease Models, Animal
Dopamine
Dopamine - metabolism
Dopamine receptors
Excitatory Amino Acid Agents - pharmacology
Female
Ganglia
Genetics
Glutamatergic transmission
Humanities and Social Sciences
Locomotion
Male
Mesencephalon
Mesencephalon - drug effects
Mesencephalon - metabolism
Mesencephalon - physiopathology
Mice
Mice, Inbred C57BL
Movement disorders
multidisciplinary
Neurodegeneration
Neurodegenerative diseases
Neurons
Neurons - drug effects
Neurons - metabolism
Neurons - physiology
Parkinson Disease - metabolism
Parkinson Disease - physiopathology
Parkinson's disease
Parkinsonian Disorders - metabolism
Parkinsonian Disorders - physiopathology
Pedunculopontine tegmental nucleus
Pedunculopontine Tegmental Nucleus - metabolism
Pedunculopontine Tegmental Nucleus - physiopathology
Recovery of function
Restoration
Science
Science (multidisciplinary)
Signs and symptoms
γ-Aminobutyric acid
title Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20activation%20of%20midbrain%20neurons%20restores%20locomotor%20function%20in%20mouse%20models%20of%20parkinsonism&rft.jtitle=Nature%20communications&rft.au=Masini,%20D%C3%A9bora&rft.date=2022-01-26&rft.volume=13&rft.issue=1&rft.spage=504&rft.epage=504&rft.pages=504-504&rft.artnum=504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28075-4&rft_dat=%3Cproquest_doaj_%3E2623325756%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622858846&rft_id=info:pmid/35082287&rfr_iscdi=true