Loading…
Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of th...
Saved in:
Published in: | Nature communications 2022-01, Vol.13 (1), p.504-504, Article 504 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623 |
container_end_page | 504 |
container_issue | 1 |
container_start_page | 504 |
container_title | Nature communications |
container_volume | 13 |
creator | Masini, Débora Kiehn, Ole |
description | The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD.
Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease. |
doi_str_mv | 10.1038/s41467-022-28075-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b</doaj_id><sourcerecordid>2623325756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkmKP7dh7QUIV0EqVuJSz5fhj8ZLYi51U4t8zuyml5YAP45H9zOvx6G2a15RcUMLU-8op72VHADpQRIqOP2tOgXDaUQns-aP8pDmvdUdwsQ1VnL9sTpggCkDJ08bemrL1s3etsXO8M3PMqc2hnaIbiompTX4pOdW2-DpnDO2YbZ4y5m1Ykj3yiE15qR6j82M91O9N-RFTzSnW6VXzIpix-vP7_az59vnT7eVVd_P1y_Xlx5vOCqnmjkLw0gYlHJfWEe4NbHoIfGAMqCMWBtnz3queyF6GwfRKYIYglQZMD-ysuV51XTY7vS9xMuWXzibq40EuW23KHO3oNSMBLBEOyzfcBKOoU8ZCoAqk9WJArQ-r1n4ZJu-sT3Mx4xPRpzcpftfbfKeV3NCNYCjw7l6g5J8LDk9PsVo_jiZ5nJUGbJiBkKJH9O0_6C4vJeGoDhQooRQ_ULBStuRaiw8PzVCiD5bQqyU0WkIfLaE5Fr15_I2Hkj8GQICtQMWrtPXl79v_kf0NGaXDEA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622858846</pqid></control><display><type>article</type><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Masini, Débora ; Kiehn, Ole</creator><creatorcontrib>Masini, Débora ; Kiehn, Ole</creatorcontrib><description>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD.
Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28075-4</identifier><identifier>PMID: 35082287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/35 ; 631/1647/2198 ; 631/378/1689/1718 ; 631/378/2632 ; 64/110 ; 64/60 ; Animal models ; Animals ; Basal ganglia ; Brain diseases ; Brain stem ; Cell activation ; Central nervous system diseases ; Disease Models, Animal ; Dopamine ; Dopamine - metabolism ; Dopamine receptors ; Excitatory Amino Acid Agents - pharmacology ; Female ; Ganglia ; Genetics ; Glutamatergic transmission ; Humanities and Social Sciences ; Locomotion ; Male ; Mesencephalon ; Mesencephalon - drug effects ; Mesencephalon - metabolism ; Mesencephalon - physiopathology ; Mice ; Mice, Inbred C57BL ; Movement disorders ; multidisciplinary ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neurons - physiology ; Parkinson Disease - metabolism ; Parkinson Disease - physiopathology ; Parkinson's disease ; Parkinsonian Disorders - metabolism ; Parkinsonian Disorders - physiopathology ; Pedunculopontine tegmental nucleus ; Pedunculopontine Tegmental Nucleus - metabolism ; Pedunculopontine Tegmental Nucleus - physiopathology ; Recovery of function ; Restoration ; Science ; Science (multidisciplinary) ; Signs and symptoms ; γ-Aminobutyric acid</subject><ispartof>Nature communications, 2022-01, Vol.13 (1), p.504-504, Article 504</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</citedby><cites>FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</cites><orcidid>0000-0002-5954-469X ; 0000-0003-1467-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622858846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622858846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35082287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masini, Débora</creatorcontrib><creatorcontrib>Kiehn, Ole</creatorcontrib><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD.
Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</description><subject>14/19</subject><subject>14/35</subject><subject>631/1647/2198</subject><subject>631/378/1689/1718</subject><subject>631/378/2632</subject><subject>64/110</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Basal ganglia</subject><subject>Brain diseases</subject><subject>Brain stem</subject><subject>Cell activation</subject><subject>Central nervous system diseases</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Excitatory Amino Acid Agents - pharmacology</subject><subject>Female</subject><subject>Ganglia</subject><subject>Genetics</subject><subject>Glutamatergic transmission</subject><subject>Humanities and Social Sciences</subject><subject>Locomotion</subject><subject>Male</subject><subject>Mesencephalon</subject><subject>Mesencephalon - drug effects</subject><subject>Mesencephalon - metabolism</subject><subject>Mesencephalon - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Movement disorders</subject><subject>multidisciplinary</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Parkinsonian Disorders - physiopathology</subject><subject>Pedunculopontine tegmental nucleus</subject><subject>Pedunculopontine Tegmental Nucleus - metabolism</subject><subject>Pedunculopontine Tegmental Nucleus - physiopathology</subject><subject>Recovery of function</subject><subject>Restoration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signs and symptoms</subject><subject>γ-Aminobutyric acid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkmKP7dh7QUIV0EqVuJSz5fhj8ZLYi51U4t8zuyml5YAP45H9zOvx6G2a15RcUMLU-8op72VHADpQRIqOP2tOgXDaUQns-aP8pDmvdUdwsQ1VnL9sTpggCkDJ08bemrL1s3etsXO8M3PMqc2hnaIbiompTX4pOdW2-DpnDO2YbZ4y5m1Ykj3yiE15qR6j82M91O9N-RFTzSnW6VXzIpix-vP7_az59vnT7eVVd_P1y_Xlx5vOCqnmjkLw0gYlHJfWEe4NbHoIfGAMqCMWBtnz3queyF6GwfRKYIYglQZMD-ysuV51XTY7vS9xMuWXzibq40EuW23KHO3oNSMBLBEOyzfcBKOoU8ZCoAqk9WJArQ-r1n4ZJu-sT3Mx4xPRpzcpftfbfKeV3NCNYCjw7l6g5J8LDk9PsVo_jiZ5nJUGbJiBkKJH9O0_6C4vJeGoDhQooRQ_ULBStuRaiw8PzVCiD5bQqyU0WkIfLaE5Fr15_I2Hkj8GQICtQMWrtPXl79v_kf0NGaXDEA</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Masini, Débora</creator><creator>Kiehn, Ole</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5954-469X</orcidid><orcidid>https://orcid.org/0000-0003-1467-2388</orcidid></search><sort><creationdate>20220126</creationdate><title>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</title><author>Masini, Débora ; Kiehn, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/19</topic><topic>14/35</topic><topic>631/1647/2198</topic><topic>631/378/1689/1718</topic><topic>631/378/2632</topic><topic>64/110</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Basal ganglia</topic><topic>Brain diseases</topic><topic>Brain stem</topic><topic>Cell activation</topic><topic>Central nervous system diseases</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Excitatory Amino Acid Agents - pharmacology</topic><topic>Female</topic><topic>Ganglia</topic><topic>Genetics</topic><topic>Glutamatergic transmission</topic><topic>Humanities and Social Sciences</topic><topic>Locomotion</topic><topic>Male</topic><topic>Mesencephalon</topic><topic>Mesencephalon - drug effects</topic><topic>Mesencephalon - metabolism</topic><topic>Mesencephalon - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Movement disorders</topic><topic>multidisciplinary</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Parkinsonian Disorders - physiopathology</topic><topic>Pedunculopontine tegmental nucleus</topic><topic>Pedunculopontine Tegmental Nucleus - metabolism</topic><topic>Pedunculopontine Tegmental Nucleus - physiopathology</topic><topic>Recovery of function</topic><topic>Restoration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signs and symptoms</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masini, Débora</creatorcontrib><creatorcontrib>Kiehn, Ole</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masini, Débora</au><au>Kiehn, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-01-26</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>504</spage><epage>504</epage><pages>504-504</pages><artnum>504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD.
Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35082287</pmid><doi>10.1038/s41467-022-28075-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5954-469X</orcidid><orcidid>https://orcid.org/0000-0003-1467-2388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-01, Vol.13 (1), p.504-504, Article 504 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_30f2c05d6d094afa81d8ac2f1827ce5b |
source | Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/19 14/35 631/1647/2198 631/378/1689/1718 631/378/2632 64/110 64/60 Animal models Animals Basal ganglia Brain diseases Brain stem Cell activation Central nervous system diseases Disease Models, Animal Dopamine Dopamine - metabolism Dopamine receptors Excitatory Amino Acid Agents - pharmacology Female Ganglia Genetics Glutamatergic transmission Humanities and Social Sciences Locomotion Male Mesencephalon Mesencephalon - drug effects Mesencephalon - metabolism Mesencephalon - physiopathology Mice Mice, Inbred C57BL Movement disorders multidisciplinary Neurodegeneration Neurodegenerative diseases Neurons Neurons - drug effects Neurons - metabolism Neurons - physiology Parkinson Disease - metabolism Parkinson Disease - physiopathology Parkinson's disease Parkinsonian Disorders - metabolism Parkinsonian Disorders - physiopathology Pedunculopontine tegmental nucleus Pedunculopontine Tegmental Nucleus - metabolism Pedunculopontine Tegmental Nucleus - physiopathology Recovery of function Restoration Science Science (multidisciplinary) Signs and symptoms γ-Aminobutyric acid |
title | Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20activation%20of%20midbrain%20neurons%20restores%20locomotor%20function%20in%20mouse%20models%20of%20parkinsonism&rft.jtitle=Nature%20communications&rft.au=Masini,%20D%C3%A9bora&rft.date=2022-01-26&rft.volume=13&rft.issue=1&rft.spage=504&rft.epage=504&rft.pages=504-504&rft.artnum=504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28075-4&rft_dat=%3Cproquest_doaj_%3E2623325756%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-12fe7cf85d47cd04ea2962f4b3321d0c2b7646e860767fba685076d0417a2a623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622858846&rft_id=info:pmid/35082287&rfr_iscdi=true |