Loading…
Producing flexible calcium carbonate from waste paper and their use as fillers for high bulk paper
Microfibrillated cellulose (MFC) was prepared from post-consumer old corrugated container (OCC) material, which was first disintegrated in water, cleaned to remove impurities, and then fibrillated by grinding. Those processed MFCs were treated with in-situ formation of calcium carbonate by adding ca...
Saved in:
Published in: | Bioresources 2023-05, Vol.18 (2), p.3400-3412 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microfibrillated cellulose (MFC) was prepared from post-consumer old corrugated container (OCC) material, which was first disintegrated in water, cleaned to remove impurities, and then fibrillated by grinding. Those processed MFCs were treated with in-situ formation of calcium carbonate by adding calcium oxide and injecting carbon dioxide into the mixture up to the ratio of 1:40 (MFC : calcium carbonate) by weight. The MFCs had a dark brown color initially but turned into high brightness materials similar to commercial ground calcium carbonate (GCC) after the in-situ formation process. The MFCs that had calcium carbonate attached on their surfaces, which were lengthy and flexible, were called flexible calcium carbonate from OCC (FCCO). Paper containing FCCO gave higher bulk, higher stiffness, and higher tensile index without lowering smoothness when compared to the paper containing commercial GCC. However, brightness was slightly lowered because of initial low brightness of the OCC. This study also demonstrated the feasibility to substitute wood fibers up to 5% with FCCO without lowering essential properties for printing paper. Benefits of the waste paper are savings of both wood resources and production cost. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.18.2.3400-3412 |