Loading…

Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities

In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Belkacem, O. B. Haj, Ammari, M. L., Dinis, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73
cites cdi_FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Belkacem, O. B. Haj
Ammari, M. L.
Dinis, Rui
description In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the performance the NOMA scheme in terms of outage probability (OP) and ergodic sum rate. Hence, we derive a new closed-form expression for the exact OP, taking into account the undesirable effects of HPA. Furthermore, to characterize the diversity order of the considered system, the asymptotic OP in the high signal-to-noise (SNR) regime is derived. Moreover, the ergodic sum rate is investigated, resulting in new upper and lower bounds. Our numerical results demonstrate that the performance loss in presence of nonlinear distortions is very substantial at high data rates. In particular, it is proved that in presence of HPA distortion, the ergodic sum rate cannot exceed a determined threshold which limits its performance compared to the ideal hardware case. Monte-Carlo simulations are conducted and their results agree well with the analytical results.
doi_str_mv 10.1109/ACCESS.2020.3020372
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3130e0687d294f31b77c7c906ccc1ca3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9180250</ieee_id><doaj_id>oai_doaj_org_article_3130e0687d294f31b77c7c906ccc1ca3</doaj_id><sourcerecordid>2454677457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIIOALuFjinLK24zg5hqi0lXhJhbPluGtwlcbFToX696QEVexhdzXamdFOktxQmFAK5V1V19PlcsKAwYQPjUt2klwwmpcpFzw__befJ9cxrmGoYoCEvEjuXzFYHza6M0iqTrf76CLxljy_PFXEdUTMyHIfe9xE8u36TzJ_rciz71rXoQ6udxivkjOr24jXf_MyeX-YvtXz9PFltqirx9RkUPQphQZZIUSDAnPkNGtKgaLMjMFGclbACmxuGymAaaDalsIUwgopDC0soOSXyWLUXXm9VtvgNjrslddO_QI-fCgdemdaVJxyQMgLuWJlZjltpDTSlJAbY6jRfNC6HbW2wX_tMPZq7XdheD8qlokslzITB0c-XpngYwxoj64U1CF7NWavDtmrv-wH1s3Icoh4ZJS0ACaA_wAjwn0Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677457</pqid></control><display><type>article</type><title>Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities</title><source>IEEE Xplore Open Access Journals</source><creator>Belkacem, O. B. Haj ; Ammari, M. L. ; Dinis, Rui</creator><creatorcontrib>Belkacem, O. B. Haj ; Ammari, M. L. ; Dinis, Rui</creatorcontrib><description>In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the performance the NOMA scheme in terms of outage probability (OP) and ergodic sum rate. Hence, we derive a new closed-form expression for the exact OP, taking into account the undesirable effects of HPA. Furthermore, to characterize the diversity order of the considered system, the asymptotic OP in the high signal-to-noise (SNR) regime is derived. Moreover, the ergodic sum rate is investigated, resulting in new upper and lower bounds. Our numerical results demonstrate that the performance loss in presence of nonlinear distortions is very substantial at high data rates. In particular, it is proved that in presence of HPA distortion, the ergodic sum rate cannot exceed a determined threshold which limits its performance compared to the ideal hardware case. Monte-Carlo simulations are conducted and their results agree well with the analytical results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3020372</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Distortion ; Downlink ; Ergodic processes ; ergodic sum rate ; Fading channels ; high-power amplifiers (HPA) ; Interference ; Lower bounds ; Mathematical analysis ; Monte Carlo simulation ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonlinear distortion ; nonlinear polynomial model ; Nonorthogonal multiple access ; outage probability (OP) ; Performance assessment ; Performance evaluation ; Polynomials ; Power amplifiers ; Signal to noise ratio</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73</citedby><cites>FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73</cites><orcidid>0000-0003-0240-0449 ; 0000-0002-8520-7267 ; 0000-0002-2871-8538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9180250$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Belkacem, O. B. Haj</creatorcontrib><creatorcontrib>Ammari, M. L.</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><title>Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the performance the NOMA scheme in terms of outage probability (OP) and ergodic sum rate. Hence, we derive a new closed-form expression for the exact OP, taking into account the undesirable effects of HPA. Furthermore, to characterize the diversity order of the considered system, the asymptotic OP in the high signal-to-noise (SNR) regime is derived. Moreover, the ergodic sum rate is investigated, resulting in new upper and lower bounds. Our numerical results demonstrate that the performance loss in presence of nonlinear distortions is very substantial at high data rates. In particular, it is proved that in presence of HPA distortion, the ergodic sum rate cannot exceed a determined threshold which limits its performance compared to the ideal hardware case. Monte-Carlo simulations are conducted and their results agree well with the analytical results.</description><subject>Distortion</subject><subject>Downlink</subject><subject>Ergodic processes</subject><subject>ergodic sum rate</subject><subject>Fading channels</subject><subject>high-power amplifiers (HPA)</subject><subject>Interference</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonlinear distortion</subject><subject>nonlinear polynomial model</subject><subject>Nonorthogonal multiple access</subject><subject>outage probability (OP)</subject><subject>Performance assessment</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>Power amplifiers</subject><subject>Signal to noise ratio</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQjBBIIOALuFjinLK24zg5hqi0lXhJhbPluGtwlcbFToX696QEVexhdzXamdFOktxQmFAK5V1V19PlcsKAwYQPjUt2klwwmpcpFzw__befJ9cxrmGoYoCEvEjuXzFYHza6M0iqTrf76CLxljy_PFXEdUTMyHIfe9xE8u36TzJ_rciz71rXoQ6udxivkjOr24jXf_MyeX-YvtXz9PFltqirx9RkUPQphQZZIUSDAnPkNGtKgaLMjMFGclbACmxuGymAaaDalsIUwgopDC0soOSXyWLUXXm9VtvgNjrslddO_QI-fCgdemdaVJxyQMgLuWJlZjltpDTSlJAbY6jRfNC6HbW2wX_tMPZq7XdheD8qlokslzITB0c-XpngYwxoj64U1CF7NWavDtmrv-wH1s3Icoh4ZJS0ACaA_wAjwn0Y</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Belkacem, O. B. Haj</creator><creator>Ammari, M. L.</creator><creator>Dinis, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0240-0449</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0002-2871-8538</orcidid></search><sort><creationdate>20200101</creationdate><title>Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities</title><author>Belkacem, O. B. Haj ; Ammari, M. L. ; Dinis, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distortion</topic><topic>Downlink</topic><topic>Ergodic processes</topic><topic>ergodic sum rate</topic><topic>Fading channels</topic><topic>high-power amplifiers (HPA)</topic><topic>Interference</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonlinear distortion</topic><topic>nonlinear polynomial model</topic><topic>Nonorthogonal multiple access</topic><topic>outage probability (OP)</topic><topic>Performance assessment</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>Power amplifiers</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belkacem, O. B. Haj</creatorcontrib><creatorcontrib>Ammari, M. L.</creatorcontrib><creatorcontrib>Dinis, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belkacem, O. B. Haj</au><au>Ammari, M. L.</au><au>Dinis, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the performance the NOMA scheme in terms of outage probability (OP) and ergodic sum rate. Hence, we derive a new closed-form expression for the exact OP, taking into account the undesirable effects of HPA. Furthermore, to characterize the diversity order of the considered system, the asymptotic OP in the high signal-to-noise (SNR) regime is derived. Moreover, the ergodic sum rate is investigated, resulting in new upper and lower bounds. Our numerical results demonstrate that the performance loss in presence of nonlinear distortions is very substantial at high data rates. In particular, it is proved that in presence of HPA distortion, the ergodic sum rate cannot exceed a determined threshold which limits its performance compared to the ideal hardware case. Monte-Carlo simulations are conducted and their results agree well with the analytical results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3020372</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0240-0449</orcidid><orcidid>https://orcid.org/0000-0002-8520-7267</orcidid><orcidid>https://orcid.org/0000-0002-2871-8538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3130e0687d294f31b77c7c906ccc1ca3
source IEEE Xplore Open Access Journals
subjects Distortion
Downlink
Ergodic processes
ergodic sum rate
Fading channels
high-power amplifiers (HPA)
Interference
Lower bounds
Mathematical analysis
Monte Carlo simulation
NOMA
non-orthogonal multiple access (NOMA)
Nonlinear distortion
nonlinear polynomial model
Nonorthogonal multiple access
outage probability (OP)
Performance assessment
Performance evaluation
Polynomials
Power amplifiers
Signal to noise ratio
title Performance Analysis of NOMA in 5G Systems with HPA Nonlinearities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20NOMA%20in%205G%20Systems%20with%20HPA%20Nonlinearities&rft.jtitle=IEEE%20access&rft.au=Belkacem,%20O.%20B.%20Haj&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3020372&rft_dat=%3Cproquest_doaj_%3E2454677457%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-10be2855be5e6e314b95e594cceb73280d0f6fb7502a01af95c85f575c18f0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454677457&rft_id=info:pmid/&rft_ieee_id=9180250&rfr_iscdi=true