Loading…
Tensor Representation Method Applied to Magnesium Alloys
The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is p...
Saved in:
Published in: | Crystals (Basel) 2023-04, Vol.13 (5), p.719 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 719 |
container_title | Crystals (Basel) |
container_volume | 13 |
creator | Zubelewicz, Aleksander |
description | The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability. |
doi_str_mv | 10.3390/cryst13050719 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750888777</galeid><doaj_id>oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf</doaj_id><sourcerecordid>A750888777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUKpH7wuet-Zjs0mORfyCFkHqOWSTSU3ZbtYkPfTfG62IzhxmeJl55oWpqmuM5pRKdGviIWVMEUMcy5PqgiBOm5YycvqnP6-uUtqiErxDnOOLSqxhTCHWrzBFSDBmnX0Y6xXk92DrxTQNHmydQ73SmxGS3-_qxTCEQ7qszpweElz91Fn19nC_vntqli-Pz3eLZWNox3LTc42YwNq0FIveSsEx73CnBWGEEmYtB9pzqwEjpDFBkshiTBDhnDGI93RWPR-5NuitmqLf6XhQQXv1LYS4UTpmbwZQFFNwzoHkCFotmexsp2mB47Zc7V1h3RxZUwwfe0hZbcM-jsW-IgLLlraspWVqfpza6AL1ows5alPSws6bMILzRV9whoQQnPOy0BwXTAwpRXC_NjFSX89R_55DPwGfPIBF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819434543</pqid></control><display><type>article</type><title>Tensor Representation Method Applied to Magnesium Alloys</title><source>Publicly Available Content Database</source><creator>Zubelewicz, Aleksander</creator><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><description>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst13050719</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Analysis ; Constitutive models ; crystallographic reorientations ; Crystallography ; Deformation ; Deformation mechanisms ; Magnesium alloys ; Magnesium base alloys ; Manganese ; Mathematical analysis ; Mathematical models ; Metals ; Methods ; Physics ; Plastic flow ; plasticity ; Representations ; Specialty metals industry ; Streamlining ; Temperature ; tensor representation method ; Tensors ; Yield stress</subject><ispartof>Crystals (Basel), 2023-04, Vol.13 (5), p.719</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819434543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819434543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><title>Tensor Representation Method Applied to Magnesium Alloys</title><title>Crystals (Basel)</title><description>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Constitutive models</subject><subject>crystallographic reorientations</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Methods</subject><subject>Physics</subject><subject>Plastic flow</subject><subject>plasticity</subject><subject>Representations</subject><subject>Specialty metals industry</subject><subject>Streamlining</subject><subject>Temperature</subject><subject>tensor representation method</subject><subject>Tensors</subject><subject>Yield stress</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhhdRUKpH7wuet-Zjs0mORfyCFkHqOWSTSU3ZbtYkPfTfG62IzhxmeJl55oWpqmuM5pRKdGviIWVMEUMcy5PqgiBOm5YycvqnP6-uUtqiErxDnOOLSqxhTCHWrzBFSDBmnX0Y6xXk92DrxTQNHmydQ73SmxGS3-_qxTCEQ7qszpweElz91Fn19nC_vntqli-Pz3eLZWNox3LTc42YwNq0FIveSsEx73CnBWGEEmYtB9pzqwEjpDFBkshiTBDhnDGI93RWPR-5NuitmqLf6XhQQXv1LYS4UTpmbwZQFFNwzoHkCFotmexsp2mB47Zc7V1h3RxZUwwfe0hZbcM-jsW-IgLLlraspWVqfpza6AL1ows5alPSws6bMILzRV9whoQQnPOy0BwXTAwpRXC_NjFSX89R_55DPwGfPIBF</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Zubelewicz, Aleksander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20230424</creationdate><title>Tensor Representation Method Applied to Magnesium Alloys</title><author>Zubelewicz, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Constitutive models</topic><topic>crystallographic reorientations</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Methods</topic><topic>Physics</topic><topic>Plastic flow</topic><topic>plasticity</topic><topic>Representations</topic><topic>Specialty metals industry</topic><topic>Streamlining</topic><topic>Temperature</topic><topic>tensor representation method</topic><topic>Tensors</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zubelewicz, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Representation Method Applied to Magnesium Alloys</atitle><jtitle>Crystals (Basel)</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>719</spage><pages>719-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst13050719</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2023-04, Vol.13 (5), p.719 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf |
source | Publicly Available Content Database |
subjects | Aluminum Analysis Constitutive models crystallographic reorientations Crystallography Deformation Deformation mechanisms Magnesium alloys Magnesium base alloys Manganese Mathematical analysis Mathematical models Metals Methods Physics Plastic flow plasticity Representations Specialty metals industry Streamlining Temperature tensor representation method Tensors Yield stress |
title | Tensor Representation Method Applied to Magnesium Alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Representation%20Method%20Applied%20to%20Magnesium%20Alloys&rft.jtitle=Crystals%20(Basel)&rft.au=Zubelewicz,%20Aleksander&rft.date=2023-04-24&rft.volume=13&rft.issue=5&rft.spage=719&rft.pages=719-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst13050719&rft_dat=%3Cgale_doaj_%3EA750888777%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819434543&rft_id=info:pmid/&rft_galeid=A750888777&rfr_iscdi=true |