Loading…

Tensor Representation Method Applied to Magnesium Alloys

The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is p...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2023-04, Vol.13 (5), p.719
Main Author: Zubelewicz, Aleksander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3
container_end_page
container_issue 5
container_start_page 719
container_title Crystals (Basel)
container_volume 13
creator Zubelewicz, Aleksander
description The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.
doi_str_mv 10.3390/cryst13050719
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750888777</galeid><doaj_id>oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf</doaj_id><sourcerecordid>A750888777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUKpH7wuet-Zjs0mORfyCFkHqOWSTSU3ZbtYkPfTfG62IzhxmeJl55oWpqmuM5pRKdGviIWVMEUMcy5PqgiBOm5YycvqnP6-uUtqiErxDnOOLSqxhTCHWrzBFSDBmnX0Y6xXk92DrxTQNHmydQ73SmxGS3-_qxTCEQ7qszpweElz91Fn19nC_vntqli-Pz3eLZWNox3LTc42YwNq0FIveSsEx73CnBWGEEmYtB9pzqwEjpDFBkshiTBDhnDGI93RWPR-5NuitmqLf6XhQQXv1LYS4UTpmbwZQFFNwzoHkCFotmexsp2mB47Zc7V1h3RxZUwwfe0hZbcM-jsW-IgLLlraspWVqfpza6AL1ows5alPSws6bMILzRV9whoQQnPOy0BwXTAwpRXC_NjFSX89R_55DPwGfPIBF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819434543</pqid></control><display><type>article</type><title>Tensor Representation Method Applied to Magnesium Alloys</title><source>Publicly Available Content Database</source><creator>Zubelewicz, Aleksander</creator><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><description>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst13050719</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Analysis ; Constitutive models ; crystallographic reorientations ; Crystallography ; Deformation ; Deformation mechanisms ; Magnesium alloys ; Magnesium base alloys ; Manganese ; Mathematical analysis ; Mathematical models ; Metals ; Methods ; Physics ; Plastic flow ; plasticity ; Representations ; Specialty metals industry ; Streamlining ; Temperature ; tensor representation method ; Tensors ; Yield stress</subject><ispartof>Crystals (Basel), 2023-04, Vol.13 (5), p.719</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819434543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819434543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><title>Tensor Representation Method Applied to Magnesium Alloys</title><title>Crystals (Basel)</title><description>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Constitutive models</subject><subject>crystallographic reorientations</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Methods</subject><subject>Physics</subject><subject>Plastic flow</subject><subject>plasticity</subject><subject>Representations</subject><subject>Specialty metals industry</subject><subject>Streamlining</subject><subject>Temperature</subject><subject>tensor representation method</subject><subject>Tensors</subject><subject>Yield stress</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhhdRUKpH7wuet-Zjs0mORfyCFkHqOWSTSU3ZbtYkPfTfG62IzhxmeJl55oWpqmuM5pRKdGviIWVMEUMcy5PqgiBOm5YycvqnP6-uUtqiErxDnOOLSqxhTCHWrzBFSDBmnX0Y6xXk92DrxTQNHmydQ73SmxGS3-_qxTCEQ7qszpweElz91Fn19nC_vntqli-Pz3eLZWNox3LTc42YwNq0FIveSsEx73CnBWGEEmYtB9pzqwEjpDFBkshiTBDhnDGI93RWPR-5NuitmqLf6XhQQXv1LYS4UTpmbwZQFFNwzoHkCFotmexsp2mB47Zc7V1h3RxZUwwfe0hZbcM-jsW-IgLLlraspWVqfpza6AL1ows5alPSws6bMILzRV9whoQQnPOy0BwXTAwpRXC_NjFSX89R_55DPwGfPIBF</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Zubelewicz, Aleksander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20230424</creationdate><title>Tensor Representation Method Applied to Magnesium Alloys</title><author>Zubelewicz, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Constitutive models</topic><topic>crystallographic reorientations</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Methods</topic><topic>Physics</topic><topic>Plastic flow</topic><topic>plasticity</topic><topic>Representations</topic><topic>Specialty metals industry</topic><topic>Streamlining</topic><topic>Temperature</topic><topic>tensor representation method</topic><topic>Tensors</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zubelewicz, Aleksander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zubelewicz, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Representation Method Applied to Magnesium Alloys</atitle><jtitle>Crystals (Basel)</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>719</spage><pages>719-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>The tensor representation method (TRM) offers tensorial tools suitable for streamlining the development of constitutive models. The TRM reduces the empiricism of phenomenological descriptions and provides physics-based justifications for the tensorial construction of material models. The method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8, Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) structure of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive description. The model predictions for Mg AZ31B have been compared with experimental data, demonstrating a desirable level of predictability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst13050719</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2023-04, Vol.13 (5), p.719
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_313efffe970e4a9596d6a37da14717bf
source Publicly Available Content Database
subjects Aluminum
Analysis
Constitutive models
crystallographic reorientations
Crystallography
Deformation
Deformation mechanisms
Magnesium alloys
Magnesium base alloys
Manganese
Mathematical analysis
Mathematical models
Metals
Methods
Physics
Plastic flow
plasticity
Representations
Specialty metals industry
Streamlining
Temperature
tensor representation method
Tensors
Yield stress
title Tensor Representation Method Applied to Magnesium Alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Representation%20Method%20Applied%20to%20Magnesium%20Alloys&rft.jtitle=Crystals%20(Basel)&rft.au=Zubelewicz,%20Aleksander&rft.date=2023-04-24&rft.volume=13&rft.issue=5&rft.spage=719&rft.pages=719-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst13050719&rft_dat=%3Cgale_doaj_%3EA750888777%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-b7a0581ac4318bd98717616a8252325dd7e3b7dae100a120929077828ffcc07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819434543&rft_id=info:pmid/&rft_galeid=A750888777&rfr_iscdi=true