Loading…
PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction
Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein famili...
Saved in:
Published in: | Journal of cheminformatics 2024-06, Vol.16 (1), p.66-16, Article 66 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c593t-d5cb0118cbf8160903a863b6c345e9d37ab60030baf882d6fc890b50d6a5b3c13 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 66 |
container_title | Journal of cheminformatics |
container_volume | 16 |
creator | Jeevan, Kandel Palistha, Shrestha Tayara, Hilal Chong, Kil T. |
description | Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery. |
doi_str_mv | 10.1186/s13321-024-00865-6 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3156ae56aece40bd9a0eb50a2df23f1e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796883815</galeid><doaj_id>oai_doaj_org_article_3156ae56aece40bd9a0eb50a2df23f1e</doaj_id><sourcerecordid>A796883815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-d5cb0118cbf8160903a863b6c345e9d37ab60030baf882d6fc890b50d6a5b3c13</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEoqXwBTigSFzgkMWOY8fmgqqKPytVgArlak3sSXCVtYOdXcG3x7tb2i5CKLLijH_vRTN-RfGUkgWlUrxKlLGaVqRuKkKk4JW4VxzTlsuqVo24f2d_VDxK6YoQwVvSPiyOmJSNUrQ9LqbPlxeYPuL8rV6Q1yWUFnEqR4TonR_KVbA45s8NRhi2hTRBTFhGnCIm9DPMLviyD7F0qymGDdpydAN4W3bO253CzVhm2jqzZR8XD3oYEz65fp8Ul-_efj37UJ1_er88Oz2vDFdsriw3Hcldmq6XVBBFGEjBOmFYw1FZ1kInCGGkg17K2oreSEU6TqwA3jFD2Umx3PvaAFd6im4F8ZcO4PSuEOKgIc7OjKgZ5QJwuww2pLMKCGYrqG1fs55i9nqz95rW3QqtyX1HGA9MD0-8-66HsNGUUt4q0mSHF9cOMfxYY5r1yiWD4wgewzpplq9GSUbrOqPP_0Kvwjr6PKsdxYnigt5SA-QOnO9D_rHZmurTVgkpmaQ8U4t_UPmxuHImeOxdrh8IXh4IMjPjz3mAdUp6-eXikK33rIkhpYj9zUAo0duA6n1AdQ6o3gVUiyx6dneUN5I_icwA2wMpH_kB4237_7H9Dff_8B8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065509561</pqid></control><display><type>article</type><title>PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jeevan, Kandel ; Palistha, Shrestha ; Tayara, Hilal ; Chong, Kil T.</creator><creatorcontrib>Jeevan, Kandel ; Palistha, Shrestha ; Tayara, Hilal ; Chong, Kil T.</creatorcontrib><description>Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.</description><identifier>ISSN: 1758-2946</identifier><identifier>EISSN: 1758-2946</identifier><identifier>DOI: 10.1186/s13321-024-00865-6</identifier><identifier>PMID: 38849917</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Binding sites ; Chemistry ; Chemistry and Materials Science ; Computational Biology/Bioinformatics ; Computer Applications in Chemistry ; Datasets ; Deep learning ; Documentation and Information in Chemistry ; Drug discovery ; Engineering ; Ligands ; Machine learning ; Neural networks ; Predictions ; Protein families ; Proteins ; R&D ; Representations ; Research & development ; Semantics ; Software ; Sparsity ; Theoretical and Computational Chemistry</subject><ispartof>Journal of cheminformatics, 2024-06, Vol.16 (1), p.66-16, Article 66</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c593t-d5cb0118cbf8160903a863b6c345e9d37ab60030baf882d6fc890b50d6a5b3c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3065509561/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3065509561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38849917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeevan, Kandel</creatorcontrib><creatorcontrib>Palistha, Shrestha</creatorcontrib><creatorcontrib>Tayara, Hilal</creatorcontrib><creatorcontrib>Chong, Kil T.</creatorcontrib><title>PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction</title><title>Journal of cheminformatics</title><addtitle>J Cheminform</addtitle><addtitle>J Cheminform</addtitle><description>Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.</description><subject>Binding sites</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Applications in Chemistry</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Documentation and Information in Chemistry</subject><subject>Drug discovery</subject><subject>Engineering</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Protein families</subject><subject>Proteins</subject><subject>R&D</subject><subject>Representations</subject><subject>Research & development</subject><subject>Semantics</subject><subject>Software</subject><subject>Sparsity</subject><subject>Theoretical and Computational Chemistry</subject><issn>1758-2946</issn><issn>1758-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEoqXwBTigSFzgkMWOY8fmgqqKPytVgArlak3sSXCVtYOdXcG3x7tb2i5CKLLijH_vRTN-RfGUkgWlUrxKlLGaVqRuKkKk4JW4VxzTlsuqVo24f2d_VDxK6YoQwVvSPiyOmJSNUrQ9LqbPlxeYPuL8rV6Q1yWUFnEqR4TonR_KVbA45s8NRhi2hTRBTFhGnCIm9DPMLviyD7F0qymGDdpydAN4W3bO253CzVhm2jqzZR8XD3oYEz65fp8Ul-_efj37UJ1_er88Oz2vDFdsriw3Hcldmq6XVBBFGEjBOmFYw1FZ1kInCGGkg17K2oreSEU6TqwA3jFD2Umx3PvaAFd6im4F8ZcO4PSuEOKgIc7OjKgZ5QJwuww2pLMKCGYrqG1fs55i9nqz95rW3QqtyX1HGA9MD0-8-66HsNGUUt4q0mSHF9cOMfxYY5r1yiWD4wgewzpplq9GSUbrOqPP_0Kvwjr6PKsdxYnigt5SA-QOnO9D_rHZmurTVgkpmaQ8U4t_UPmxuHImeOxdrh8IXh4IMjPjz3mAdUp6-eXikK33rIkhpYj9zUAo0duA6n1AdQ6o3gVUiyx6dneUN5I_icwA2wMpH_kB4237_7H9Dff_8B8</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Jeevan, Kandel</creator><creator>Palistha, Shrestha</creator><creator>Tayara, Hilal</creator><creator>Chong, Kil T.</creator><general>Springer International Publishing</general><general>BioMed Central Ltd</general><general>Springer Nature B.V</general><general>BMC</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240607</creationdate><title>PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction</title><author>Jeevan, Kandel ; Palistha, Shrestha ; Tayara, Hilal ; Chong, Kil T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-d5cb0118cbf8160903a863b6c345e9d37ab60030baf882d6fc890b50d6a5b3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding sites</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Applications in Chemistry</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Documentation and Information in Chemistry</topic><topic>Drug discovery</topic><topic>Engineering</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Protein families</topic><topic>Proteins</topic><topic>R&D</topic><topic>Representations</topic><topic>Research & development</topic><topic>Semantics</topic><topic>Software</topic><topic>Sparsity</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeevan, Kandel</creatorcontrib><creatorcontrib>Palistha, Shrestha</creatorcontrib><creatorcontrib>Tayara, Hilal</creatorcontrib><creatorcontrib>Chong, Kil T.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of cheminformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeevan, Kandel</au><au>Palistha, Shrestha</au><au>Tayara, Hilal</au><au>Chong, Kil T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction</atitle><jtitle>Journal of cheminformatics</jtitle><stitle>J Cheminform</stitle><addtitle>J Cheminform</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>66</spage><epage>16</epage><pages>66-16</pages><artnum>66</artnum><issn>1758-2946</issn><eissn>1758-2946</eissn><abstract>Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38849917</pmid><doi>10.1186/s13321-024-00865-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-2946 |
ispartof | Journal of cheminformatics, 2024-06, Vol.16 (1), p.66-16, Article 66 |
issn | 1758-2946 1758-2946 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3156ae56aece40bd9a0eb50a2df23f1e |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding sites Chemistry Chemistry and Materials Science Computational Biology/Bioinformatics Computer Applications in Chemistry Datasets Deep learning Documentation and Information in Chemistry Drug discovery Engineering Ligands Machine learning Neural networks Predictions Protein families Proteins R&D Representations Research & development Semantics Software Sparsity Theoretical and Computational Chemistry |
title | PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PUResNetV2.0:%20a%20deep%20learning%20model%20leveraging%20sparse%20representation%20for%20improved%20ligand%20binding%20site%20prediction&rft.jtitle=Journal%20of%20cheminformatics&rft.au=Jeevan,%20Kandel&rft.date=2024-06-07&rft.volume=16&rft.issue=1&rft.spage=66&rft.epage=16&rft.pages=66-16&rft.artnum=66&rft.issn=1758-2946&rft.eissn=1758-2946&rft_id=info:doi/10.1186/s13321-024-00865-6&rft_dat=%3Cgale_doaj_%3EA796883815%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-d5cb0118cbf8160903a863b6c345e9d37ab60030baf882d6fc890b50d6a5b3c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3065509561&rft_id=info:pmid/38849917&rft_galeid=A796883815&rfr_iscdi=true |