Loading…
Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation
Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identi...
Saved in:
Published in: | Stem cells international 2021, Vol.2021, p.7653013-10 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143 |
---|---|
cites | cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143 |
container_end_page | 10 |
container_issue | |
container_start_page | 7653013 |
container_title | Stem cells international |
container_volume | 2021 |
creator | Pan, Yuhua Lu, Ting Peng, Ling Zeng, Qi Huang, Xiangyu Yao, Xinchen Wu, Buling Xiong, Fu |
description | Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes. |
doi_str_mv | 10.1155/2021/7653013 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696857826</galeid><doaj_id>oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82</doaj_id><sourcerecordid>A696857826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</originalsourceid><addsrcrecordid>eNqNk1uL00AUgIMo7rLum88SEETQ7M5M5pK8CKXsuoV6eVDo2zCZSzs1mamZpNK_4K920tbaihQTmIQz3_kOw5mTJM8huIGQkFsEELxllOQA5o-SS0gLlpWUFY8P_3R2kVyHsATxyUuAAXqaXOSYYIKK4jL5ed872VnvRJ2O4rIJNqTepHey82oTVrUI1mWj9EPfiQELqXXpLJta902r9GMMbJxqfWNl-rBZeeVdZ0UqnEo_-xBsVet04ta-XutGu24wz7LxIib44JthT8Tq6636WfLEiDro6_33Kvl6f_dl_JBNP72fjEfTTFJE8oyWuJJCEMBQqQgTcQWYSWMYgwJjXbESqYoSWmHBmGS4qJSklAIDKTIQ51fJZOdVXiz5qrWNaDfcC8u3Ad_OuWg7K2vNc0gpQ7BQlcpxJSohgSkx1Dk0tDIFiq53O9eqrxqtZDxjK-oT6emOsws-92teYFzGA0TB672g9d97HTre2CB1XQunfR84IowAWtJiQF_-hS5938aebSkMCsoo_EPNRTyAdcbHunKQ8tHgIaxA9DxV5IQikOeRuvkHFV-lY8O908bG-In2_xKOKrw6SlhoUXeL4Ot-e9VOzefBI-PbHSjbeAFbbQ7NgIAPM8OHmeH7mYn4i-MGHuDfExKBNztgYZ0SP-x53S9gcxtL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574086761</pqid></control><display><type>article</type><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu</creator><contributor>Hayashi, Yohei ; Yohei Hayashi</contributor><creatorcontrib>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu ; Hayashi, Yohei ; Yohei Hayashi</creatorcontrib><description>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</description><identifier>ISSN: 1687-966X</identifier><identifier>ISSN: 1687-9678</identifier><identifier>EISSN: 1687-9678</identifier><identifier>DOI: 10.1155/2021/7653013</identifier><identifier>PMID: 34545288</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Analysis ; Biotechnology ; Capillary electrophoresis ; Chromosomes ; Congenital diseases ; Deactivation ; Dental materials ; Dental pulp ; Dentin ; Dentinogenesis ; DNA sequencing ; Dspp protein ; Dysplasia ; Ectodysplasin ; Electrophoresis ; Females ; Functional analysis ; Gene expression ; Gene sequencing ; Genetic aspects ; Genotype & phenotype ; Heterogeneity ; Inactivation ; Kinases ; Medical research ; Missense mutation ; Morphogenesis ; Mutants ; Mutation ; NF-κB protein ; Nucleotide sequencing ; Odontogenesis ; Pathogenesis ; Phenotypes ; Proteins ; Signal transduction ; Stem cells ; Teeth ; Transfection ; Tumor necrosis factor-TNF ; X chromosomes ; X-chromosome inactivation</subject><ispartof>Stem cells international, 2021, Vol.2021, p.7653013-10</ispartof><rights>Copyright © 2021 Yuhua Pan et al.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Yuhua Pan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Yuhua Pan et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</citedby><cites>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</cites><orcidid>0000-0002-4381-4376 ; 0000-0003-2465-9056 ; 0000-0001-8039-1627 ; 0000-0001-5499-0693 ; 0000-0001-8019-0219 ; 0000-0003-2428-6165 ; 0000-0003-1513-1583 ; 0000-0002-6040-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2574086761/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2574086761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34545288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hayashi, Yohei</contributor><contributor>Yohei Hayashi</contributor><creatorcontrib>Pan, Yuhua</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Zeng, Qi</creatorcontrib><creatorcontrib>Huang, Xiangyu</creatorcontrib><creatorcontrib>Yao, Xinchen</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><title>Stem cells international</title><addtitle>Stem Cells Int</addtitle><description>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</description><subject>Analysis</subject><subject>Biotechnology</subject><subject>Capillary electrophoresis</subject><subject>Chromosomes</subject><subject>Congenital diseases</subject><subject>Deactivation</subject><subject>Dental materials</subject><subject>Dental pulp</subject><subject>Dentin</subject><subject>Dentinogenesis</subject><subject>DNA sequencing</subject><subject>Dspp protein</subject><subject>Dysplasia</subject><subject>Ectodysplasin</subject><subject>Electrophoresis</subject><subject>Females</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genotype & phenotype</subject><subject>Heterogeneity</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Medical research</subject><subject>Missense mutation</subject><subject>Morphogenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>NF-κB protein</subject><subject>Nucleotide sequencing</subject><subject>Odontogenesis</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Teeth</subject><subject>Transfection</subject><subject>Tumor necrosis factor-TNF</subject><subject>X chromosomes</subject><subject>X-chromosome inactivation</subject><issn>1687-966X</issn><issn>1687-9678</issn><issn>1687-9678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL00AUgIMo7rLum88SEETQ7M5M5pK8CKXsuoV6eVDo2zCZSzs1mamZpNK_4K920tbaihQTmIQz3_kOw5mTJM8huIGQkFsEELxllOQA5o-SS0gLlpWUFY8P_3R2kVyHsATxyUuAAXqaXOSYYIKK4jL5ed872VnvRJ2O4rIJNqTepHey82oTVrUI1mWj9EPfiQELqXXpLJta902r9GMMbJxqfWNl-rBZeeVdZ0UqnEo_-xBsVet04ta-XutGu24wz7LxIib44JthT8Tq6636WfLEiDro6_33Kvl6f_dl_JBNP72fjEfTTFJE8oyWuJJCEMBQqQgTcQWYSWMYgwJjXbESqYoSWmHBmGS4qJSklAIDKTIQ51fJZOdVXiz5qrWNaDfcC8u3Ad_OuWg7K2vNc0gpQ7BQlcpxJSohgSkx1Dk0tDIFiq53O9eqrxqtZDxjK-oT6emOsws-92teYFzGA0TB672g9d97HTre2CB1XQunfR84IowAWtJiQF_-hS5938aebSkMCsoo_EPNRTyAdcbHunKQ8tHgIaxA9DxV5IQikOeRuvkHFV-lY8O908bG-In2_xKOKrw6SlhoUXeL4Ot-e9VOzefBI-PbHSjbeAFbbQ7NgIAPM8OHmeH7mYn4i-MGHuDfExKBNztgYZ0SP-x53S9gcxtL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Yuhua</creator><creator>Lu, Ting</creator><creator>Peng, Ling</creator><creator>Zeng, Qi</creator><creator>Huang, Xiangyu</creator><creator>Yao, Xinchen</creator><creator>Wu, Buling</creator><creator>Xiong, Fu</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4381-4376</orcidid><orcidid>https://orcid.org/0000-0003-2465-9056</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0001-5499-0693</orcidid><orcidid>https://orcid.org/0000-0001-8019-0219</orcidid><orcidid>https://orcid.org/0000-0003-2428-6165</orcidid><orcidid>https://orcid.org/0000-0003-1513-1583</orcidid><orcidid>https://orcid.org/0000-0002-6040-3210</orcidid></search><sort><creationdate>2021</creationdate><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><author>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Biotechnology</topic><topic>Capillary electrophoresis</topic><topic>Chromosomes</topic><topic>Congenital diseases</topic><topic>Deactivation</topic><topic>Dental materials</topic><topic>Dental pulp</topic><topic>Dentin</topic><topic>Dentinogenesis</topic><topic>DNA sequencing</topic><topic>Dspp protein</topic><topic>Dysplasia</topic><topic>Ectodysplasin</topic><topic>Electrophoresis</topic><topic>Females</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genotype & phenotype</topic><topic>Heterogeneity</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Medical research</topic><topic>Missense mutation</topic><topic>Morphogenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>NF-κB protein</topic><topic>Nucleotide sequencing</topic><topic>Odontogenesis</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Teeth</topic><topic>Transfection</topic><topic>Tumor necrosis factor-TNF</topic><topic>X chromosomes</topic><topic>X-chromosome inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yuhua</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Zeng, Qi</creatorcontrib><creatorcontrib>Huang, Xiangyu</creatorcontrib><creatorcontrib>Yao, Xinchen</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Stem cells international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yuhua</au><au>Lu, Ting</au><au>Peng, Ling</au><au>Zeng, Qi</au><au>Huang, Xiangyu</au><au>Yao, Xinchen</au><au>Wu, Buling</au><au>Xiong, Fu</au><au>Hayashi, Yohei</au><au>Yohei Hayashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</atitle><jtitle>Stem cells international</jtitle><addtitle>Stem Cells Int</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>7653013</spage><epage>10</epage><pages>7653013-10</pages><issn>1687-966X</issn><issn>1687-9678</issn><eissn>1687-9678</eissn><abstract>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34545288</pmid><doi>10.1155/2021/7653013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4381-4376</orcidid><orcidid>https://orcid.org/0000-0003-2465-9056</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0001-5499-0693</orcidid><orcidid>https://orcid.org/0000-0001-8019-0219</orcidid><orcidid>https://orcid.org/0000-0003-2428-6165</orcidid><orcidid>https://orcid.org/0000-0003-1513-1583</orcidid><orcidid>https://orcid.org/0000-0002-6040-3210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-966X |
ispartof | Stem cells international, 2021, Vol.2021, p.7653013-10 |
issn | 1687-966X 1687-9678 1687-9678 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82 |
source | Publicly Available Content Database; Wiley Open Access; PubMed Central |
subjects | Analysis Biotechnology Capillary electrophoresis Chromosomes Congenital diseases Deactivation Dental materials Dental pulp Dentin Dentinogenesis DNA sequencing Dspp protein Dysplasia Ectodysplasin Electrophoresis Females Functional analysis Gene expression Gene sequencing Genetic aspects Genotype & phenotype Heterogeneity Inactivation Kinases Medical research Missense mutation Morphogenesis Mutants Mutation NF-κB protein Nucleotide sequencing Odontogenesis Pathogenesis Phenotypes Proteins Signal transduction Stem cells Teeth Transfection Tumor necrosis factor-TNF X chromosomes X-chromosome inactivation |
title | Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20Ectodysplasin-A%20Mutations%20in%20X-Linked%20Nonsyndromic%20Hypodontia%20and%20Possible%20Involvement%20of%20X-Chromosome%20Inactivation&rft.jtitle=Stem%20cells%20international&rft.au=Pan,%20Yuhua&rft.date=2021&rft.volume=2021&rft.spage=7653013&rft.epage=10&rft.pages=7653013-10&rft.issn=1687-966X&rft.eissn=1687-9678&rft_id=info:doi/10.1155/2021/7653013&rft_dat=%3Cgale_doaj_%3EA696857826%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574086761&rft_id=info:pmid/34545288&rft_galeid=A696857826&rfr_iscdi=true |