Loading…

Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation

Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identi...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells international 2021, Vol.2021, p.7653013-10
Main Authors: Pan, Yuhua, Lu, Ting, Peng, Ling, Zeng, Qi, Huang, Xiangyu, Yao, Xinchen, Wu, Buling, Xiong, Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143
cites cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143
container_end_page 10
container_issue
container_start_page 7653013
container_title Stem cells international
container_volume 2021
creator Pan, Yuhua
Lu, Ting
Peng, Ling
Zeng, Qi
Huang, Xiangyu
Yao, Xinchen
Wu, Buling
Xiong, Fu
description Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.
doi_str_mv 10.1155/2021/7653013
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696857826</galeid><doaj_id>oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82</doaj_id><sourcerecordid>A696857826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</originalsourceid><addsrcrecordid>eNqNk1uL00AUgIMo7rLum88SEETQ7M5M5pK8CKXsuoV6eVDo2zCZSzs1mamZpNK_4K920tbaihQTmIQz3_kOw5mTJM8huIGQkFsEELxllOQA5o-SS0gLlpWUFY8P_3R2kVyHsATxyUuAAXqaXOSYYIKK4jL5ed872VnvRJ2O4rIJNqTepHey82oTVrUI1mWj9EPfiQELqXXpLJta902r9GMMbJxqfWNl-rBZeeVdZ0UqnEo_-xBsVet04ta-XutGu24wz7LxIib44JthT8Tq6636WfLEiDro6_33Kvl6f_dl_JBNP72fjEfTTFJE8oyWuJJCEMBQqQgTcQWYSWMYgwJjXbESqYoSWmHBmGS4qJSklAIDKTIQ51fJZOdVXiz5qrWNaDfcC8u3Ad_OuWg7K2vNc0gpQ7BQlcpxJSohgSkx1Dk0tDIFiq53O9eqrxqtZDxjK-oT6emOsws-92teYFzGA0TB672g9d97HTre2CB1XQunfR84IowAWtJiQF_-hS5938aebSkMCsoo_EPNRTyAdcbHunKQ8tHgIaxA9DxV5IQikOeRuvkHFV-lY8O908bG-In2_xKOKrw6SlhoUXeL4Ot-e9VOzefBI-PbHSjbeAFbbQ7NgIAPM8OHmeH7mYn4i-MGHuDfExKBNztgYZ0SP-x53S9gcxtL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574086761</pqid></control><display><type>article</type><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu</creator><contributor>Hayashi, Yohei ; Yohei Hayashi</contributor><creatorcontrib>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu ; Hayashi, Yohei ; Yohei Hayashi</creatorcontrib><description>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C&gt;T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</description><identifier>ISSN: 1687-966X</identifier><identifier>ISSN: 1687-9678</identifier><identifier>EISSN: 1687-9678</identifier><identifier>DOI: 10.1155/2021/7653013</identifier><identifier>PMID: 34545288</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Analysis ; Biotechnology ; Capillary electrophoresis ; Chromosomes ; Congenital diseases ; Deactivation ; Dental materials ; Dental pulp ; Dentin ; Dentinogenesis ; DNA sequencing ; Dspp protein ; Dysplasia ; Ectodysplasin ; Electrophoresis ; Females ; Functional analysis ; Gene expression ; Gene sequencing ; Genetic aspects ; Genotype &amp; phenotype ; Heterogeneity ; Inactivation ; Kinases ; Medical research ; Missense mutation ; Morphogenesis ; Mutants ; Mutation ; NF-κB protein ; Nucleotide sequencing ; Odontogenesis ; Pathogenesis ; Phenotypes ; Proteins ; Signal transduction ; Stem cells ; Teeth ; Transfection ; Tumor necrosis factor-TNF ; X chromosomes ; X-chromosome inactivation</subject><ispartof>Stem cells international, 2021, Vol.2021, p.7653013-10</ispartof><rights>Copyright © 2021 Yuhua Pan et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Yuhua Pan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Yuhua Pan et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</citedby><cites>FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</cites><orcidid>0000-0002-4381-4376 ; 0000-0003-2465-9056 ; 0000-0001-8039-1627 ; 0000-0001-5499-0693 ; 0000-0001-8019-0219 ; 0000-0003-2428-6165 ; 0000-0003-1513-1583 ; 0000-0002-6040-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2574086761/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2574086761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34545288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hayashi, Yohei</contributor><contributor>Yohei Hayashi</contributor><creatorcontrib>Pan, Yuhua</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Zeng, Qi</creatorcontrib><creatorcontrib>Huang, Xiangyu</creatorcontrib><creatorcontrib>Yao, Xinchen</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><title>Stem cells international</title><addtitle>Stem Cells Int</addtitle><description>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C&gt;T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</description><subject>Analysis</subject><subject>Biotechnology</subject><subject>Capillary electrophoresis</subject><subject>Chromosomes</subject><subject>Congenital diseases</subject><subject>Deactivation</subject><subject>Dental materials</subject><subject>Dental pulp</subject><subject>Dentin</subject><subject>Dentinogenesis</subject><subject>DNA sequencing</subject><subject>Dspp protein</subject><subject>Dysplasia</subject><subject>Ectodysplasin</subject><subject>Electrophoresis</subject><subject>Females</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Heterogeneity</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Medical research</subject><subject>Missense mutation</subject><subject>Morphogenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>NF-κB protein</subject><subject>Nucleotide sequencing</subject><subject>Odontogenesis</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Teeth</subject><subject>Transfection</subject><subject>Tumor necrosis factor-TNF</subject><subject>X chromosomes</subject><subject>X-chromosome inactivation</subject><issn>1687-966X</issn><issn>1687-9678</issn><issn>1687-9678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL00AUgIMo7rLum88SEETQ7M5M5pK8CKXsuoV6eVDo2zCZSzs1mamZpNK_4K920tbaihQTmIQz3_kOw5mTJM8huIGQkFsEELxllOQA5o-SS0gLlpWUFY8P_3R2kVyHsATxyUuAAXqaXOSYYIKK4jL5ed872VnvRJ2O4rIJNqTepHey82oTVrUI1mWj9EPfiQELqXXpLJta902r9GMMbJxqfWNl-rBZeeVdZ0UqnEo_-xBsVet04ta-XutGu24wz7LxIib44JthT8Tq6636WfLEiDro6_33Kvl6f_dl_JBNP72fjEfTTFJE8oyWuJJCEMBQqQgTcQWYSWMYgwJjXbESqYoSWmHBmGS4qJSklAIDKTIQ51fJZOdVXiz5qrWNaDfcC8u3Ad_OuWg7K2vNc0gpQ7BQlcpxJSohgSkx1Dk0tDIFiq53O9eqrxqtZDxjK-oT6emOsws-92teYFzGA0TB672g9d97HTre2CB1XQunfR84IowAWtJiQF_-hS5938aebSkMCsoo_EPNRTyAdcbHunKQ8tHgIaxA9DxV5IQikOeRuvkHFV-lY8O908bG-In2_xKOKrw6SlhoUXeL4Ot-e9VOzefBI-PbHSjbeAFbbQ7NgIAPM8OHmeH7mYn4i-MGHuDfExKBNztgYZ0SP-x53S9gcxtL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pan, Yuhua</creator><creator>Lu, Ting</creator><creator>Peng, Ling</creator><creator>Zeng, Qi</creator><creator>Huang, Xiangyu</creator><creator>Yao, Xinchen</creator><creator>Wu, Buling</creator><creator>Xiong, Fu</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4381-4376</orcidid><orcidid>https://orcid.org/0000-0003-2465-9056</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0001-5499-0693</orcidid><orcidid>https://orcid.org/0000-0001-8019-0219</orcidid><orcidid>https://orcid.org/0000-0003-2428-6165</orcidid><orcidid>https://orcid.org/0000-0003-1513-1583</orcidid><orcidid>https://orcid.org/0000-0002-6040-3210</orcidid></search><sort><creationdate>2021</creationdate><title>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</title><author>Pan, Yuhua ; Lu, Ting ; Peng, Ling ; Zeng, Qi ; Huang, Xiangyu ; Yao, Xinchen ; Wu, Buling ; Xiong, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Biotechnology</topic><topic>Capillary electrophoresis</topic><topic>Chromosomes</topic><topic>Congenital diseases</topic><topic>Deactivation</topic><topic>Dental materials</topic><topic>Dental pulp</topic><topic>Dentin</topic><topic>Dentinogenesis</topic><topic>DNA sequencing</topic><topic>Dspp protein</topic><topic>Dysplasia</topic><topic>Ectodysplasin</topic><topic>Electrophoresis</topic><topic>Females</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Heterogeneity</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Medical research</topic><topic>Missense mutation</topic><topic>Morphogenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>NF-κB protein</topic><topic>Nucleotide sequencing</topic><topic>Odontogenesis</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Teeth</topic><topic>Transfection</topic><topic>Tumor necrosis factor-TNF</topic><topic>X chromosomes</topic><topic>X-chromosome inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yuhua</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Peng, Ling</creatorcontrib><creatorcontrib>Zeng, Qi</creatorcontrib><creatorcontrib>Huang, Xiangyu</creatorcontrib><creatorcontrib>Yao, Xinchen</creatorcontrib><creatorcontrib>Wu, Buling</creatorcontrib><creatorcontrib>Xiong, Fu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Stem cells international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yuhua</au><au>Lu, Ting</au><au>Peng, Ling</au><au>Zeng, Qi</au><au>Huang, Xiangyu</au><au>Yao, Xinchen</au><au>Wu, Buling</au><au>Xiong, Fu</au><au>Hayashi, Yohei</au><au>Yohei Hayashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation</atitle><jtitle>Stem cells international</jtitle><addtitle>Stem Cells Int</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>7653013</spage><epage>10</epage><pages>7653013-10</pages><issn>1687-966X</issn><issn>1687-9678</issn><eissn>1687-9678</eissn><abstract>Background. Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). Materials and Methods. Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. Results. In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C&gt;T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. Conclusions. In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34545288</pmid><doi>10.1155/2021/7653013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4381-4376</orcidid><orcidid>https://orcid.org/0000-0003-2465-9056</orcidid><orcidid>https://orcid.org/0000-0001-8039-1627</orcidid><orcidid>https://orcid.org/0000-0001-5499-0693</orcidid><orcidid>https://orcid.org/0000-0001-8019-0219</orcidid><orcidid>https://orcid.org/0000-0003-2428-6165</orcidid><orcidid>https://orcid.org/0000-0003-1513-1583</orcidid><orcidid>https://orcid.org/0000-0002-6040-3210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-966X
ispartof Stem cells international, 2021, Vol.2021, p.7653013-10
issn 1687-966X
1687-9678
1687-9678
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_31667218dbd34babac0f941e31f6bf82
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Analysis
Biotechnology
Capillary electrophoresis
Chromosomes
Congenital diseases
Deactivation
Dental materials
Dental pulp
Dentin
Dentinogenesis
DNA sequencing
Dspp protein
Dysplasia
Ectodysplasin
Electrophoresis
Females
Functional analysis
Gene expression
Gene sequencing
Genetic aspects
Genotype & phenotype
Heterogeneity
Inactivation
Kinases
Medical research
Missense mutation
Morphogenesis
Mutants
Mutation
NF-κB protein
Nucleotide sequencing
Odontogenesis
Pathogenesis
Phenotypes
Proteins
Signal transduction
Stem cells
Teeth
Transfection
Tumor necrosis factor-TNF
X chromosomes
X-chromosome inactivation
title Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20Ectodysplasin-A%20Mutations%20in%20X-Linked%20Nonsyndromic%20Hypodontia%20and%20Possible%20Involvement%20of%20X-Chromosome%20Inactivation&rft.jtitle=Stem%20cells%20international&rft.au=Pan,%20Yuhua&rft.date=2021&rft.volume=2021&rft.spage=7653013&rft.epage=10&rft.pages=7653013-10&rft.issn=1687-966X&rft.eissn=1687-9678&rft_id=info:doi/10.1155/2021/7653013&rft_dat=%3Cgale_doaj_%3EA696857826%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6253-694bcaa50729d57a29d047cff771a44eb792db656b4a77c748bdc6660f162f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574086761&rft_id=info:pmid/34545288&rft_galeid=A696857826&rfr_iscdi=true