Loading…

Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR)

Nanofluid flooding, as a new technique to enhance oil recovery, has recently aroused much attention. The current study considers the performance of a novel iron-carbon nanohybrid to EOR. Carbon nanoparticles was synthesized via the hydrothermal method with citric acid and hybridize with iron (Fe3O4)...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-12, Vol.12 (1), p.103
Main Authors: Razavirad, Fatemeh, Shahrabadi, Abbas, Babakhani Dehkordi, Parham, Rashidi, Alimorad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanofluid flooding, as a new technique to enhance oil recovery, has recently aroused much attention. The current study considers the performance of a novel iron-carbon nanohybrid to EOR. Carbon nanoparticles was synthesized via the hydrothermal method with citric acid and hybridize with iron (Fe3O4). The investigated nanohybrid is characterized by its rheological properties (viscosity), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. The efficiency of the synthetized nanoparticle in displacing heavy oil is initially assessed using an oil-wet glass micromodel at ambient conditions. Nanofluid samples with various concentrations (0.05 wt % and 0.5 wt %) dispersed in a water base fluid with varied salinities were first prepared. The prepared nanofluids provide high stability with no additive such as polymer or surfactant. Before displacement experiments were run, to achieve a better understanding of fluid-fluid and grain-fluid interactions in porous media, a series of sub-pore scale tests-including interfacial tension (IFT), contact angle, and zeta potential-were conducted. Nanofluid flooding results show that the nanofluid with the medium base fluid salinity and highest nanoparticle concertation provides the highest oil recovery. However, it is observed that increasing the nanofluid concentration from 0.05% to 0.5% provided only three percent more oil. In contrast, the lowest oil recovery resulted from low salinity water flooding. It was also observed that the measured IFT value between nanofluids and crude oil is a function of nanofluid concentration and base fluid salinities, i.e., the IFT values decrease with the increase of nanofluid concentration and base fluid salinity reduction. However, the base fluid salinity enhancement leads to wettability alteration towards more water-wetness. The main mechanisms responsible for oil recovery enhancement during nanofluid flooding is mainly attributed to wettability alteration toward water-wetness and micro-dispersion formation. However, the interfacial tension (IFT) reduction using the iron-carbon nanohybrid is also observed but the reduction is not significant.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12010103