Loading…

Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals

The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density fun...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2023-09, Vol.14 (10), p.1888
Main Authors: Marchenkov, Vyacheslav V., Lukoyanov, Alexey V., Baidak, Semyon T., Perevalova, Alexandra N., Fominykh, Bogdan M., Naumov, Sergey V., Marchenkova, Elena B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3
cites cdi_FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3
container_end_page
container_issue 10
container_start_page 1888
container_title Micromachines (Basel)
container_volume 14
creator Marchenkov, Vyacheslav V.
Lukoyanov, Alexey V.
Baidak, Semyon T.
Perevalova, Alexandra N.
Fominykh, Bogdan M.
Naumov, Sergey V.
Marchenkova, Elena B.
description The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin–orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV−1 cell−1 (5 K) to 0.307 states eV−1 cell−1 (300 K) and from 0.9 × 1019 cm−3 (5 K) to 2.6 × 1019 cm−3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV−1 cell−1 (5 K) to 0.198 states eV−1 cell−1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm−3 (5 K) to 2.81 × 1019 cm−3 (300 K).
doi_str_mv 10.3390/mi14101888
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_31b4f77f3e8649ab939a162e7fc8e922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_31b4f77f3e8649ab939a162e7fc8e922</doaj_id><sourcerecordid>2883577015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3</originalsourceid><addsrcrecordid>eNpdkd9LHDEQgJeiULn64l-w4IsI1-bH7mbyJHrYVhAq3gm-hWx2cubY26xJtuB_3-hJ6zUPmSH5-GaYKYoTSr5yLsm3raMVJRQAPhVHjAg2b5rm8eBD_rk4jnFD8hFC5uuouL_u0aTgB2fKZQqTSVPAUg9duQp6iKMPqbwLfsSQHMbS2_LKsRXyNySny5wu3bDusVyEl5h0H78UhzYHPH6Ps-Lh-_Vq8XN---vHzeLydm6qmqS5qSsLQHQjayqENa3VAA2tBRUdxQ5IBQY0qdsOhGwryjNFUQAwDdYQy2fFzc7beb1RY3BbHV6U1069PfiwVjp3bXpUnLaVzUU4QlNJ3UouNW0Y5rKAkrHsuti5xqndYmdwSEH3e9L9n8E9qbX_rShpiGRCZMPZuyH45wljUlsXDfa9HtBPUTEAXgtBaJ3R0__QjZ_CkGf1SjGgjNSQqfMdZYKPMaD92w0l6nXf6t---R84CpvG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882812058</pqid></control><display><type>article</type><title>Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Marchenkov, Vyacheslav V. ; Lukoyanov, Alexey V. ; Baidak, Semyon T. ; Perevalova, Alexandra N. ; Fominykh, Bogdan M. ; Naumov, Sergey V. ; Marchenkova, Elena B.</creator><creatorcontrib>Marchenkov, Vyacheslav V. ; Lukoyanov, Alexey V. ; Baidak, Semyon T. ; Perevalova, Alexandra N. ; Fominykh, Bogdan M. ; Naumov, Sergey V. ; Marchenkova, Elena B.</creatorcontrib><description>The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin–orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV−1 cell−1 (5 K) to 0.307 states eV−1 cell−1 (300 K) and from 0.9 × 1019 cm−3 (5 K) to 2.6 × 1019 cm−3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV−1 cell−1 (5 K) to 0.198 states eV−1 cell−1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm−3 (5 K) to 2.81 × 1019 cm−3 (300 K).</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi14101888</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2D materials ; Bi2Se3 ; Bi2Te3 ; Bismuth tellurides ; Carrier density ; Collaboration ; Crystal structure ; Current carriers ; Density of states ; DFT ; Electromagnetism ; Electron states ; Electronic structure ; Energy ; Fermi level ; Hall effect ; Magnetic fields ; Scanning electron microscopy ; Single crystals ; Spin-orbit interactions ; Symmetry ; topological insulator ; Topological insulators ; Transport properties</subject><ispartof>Micromachines (Basel), 2023-09, Vol.14 (10), p.1888</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3</citedby><cites>FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3</cites><orcidid>0000-0003-2044-1789 ; 0000-0003-4459-0893 ; 0000-0002-4755-3839 ; 0000-0002-8540-8720 ; 0009-0001-1618-6773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882812058/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882812058?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Marchenkov, Vyacheslav V.</creatorcontrib><creatorcontrib>Lukoyanov, Alexey V.</creatorcontrib><creatorcontrib>Baidak, Semyon T.</creatorcontrib><creatorcontrib>Perevalova, Alexandra N.</creatorcontrib><creatorcontrib>Fominykh, Bogdan M.</creatorcontrib><creatorcontrib>Naumov, Sergey V.</creatorcontrib><creatorcontrib>Marchenkova, Elena B.</creatorcontrib><title>Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals</title><title>Micromachines (Basel)</title><description>The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin–orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV−1 cell−1 (5 K) to 0.307 states eV−1 cell−1 (300 K) and from 0.9 × 1019 cm−3 (5 K) to 2.6 × 1019 cm−3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV−1 cell−1 (5 K) to 0.198 states eV−1 cell−1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm−3 (5 K) to 2.81 × 1019 cm−3 (300 K).</description><subject>2D materials</subject><subject>Bi2Se3</subject><subject>Bi2Te3</subject><subject>Bismuth tellurides</subject><subject>Carrier density</subject><subject>Collaboration</subject><subject>Crystal structure</subject><subject>Current carriers</subject><subject>Density of states</subject><subject>DFT</subject><subject>Electromagnetism</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Fermi level</subject><subject>Hall effect</subject><subject>Magnetic fields</subject><subject>Scanning electron microscopy</subject><subject>Single crystals</subject><subject>Spin-orbit interactions</subject><subject>Symmetry</subject><subject>topological insulator</subject><subject>Topological insulators</subject><subject>Transport properties</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkd9LHDEQgJeiULn64l-w4IsI1-bH7mbyJHrYVhAq3gm-hWx2cubY26xJtuB_3-hJ6zUPmSH5-GaYKYoTSr5yLsm3raMVJRQAPhVHjAg2b5rm8eBD_rk4jnFD8hFC5uuouL_u0aTgB2fKZQqTSVPAUg9duQp6iKMPqbwLfsSQHMbS2_LKsRXyNySny5wu3bDusVyEl5h0H78UhzYHPH6Ps-Lh-_Vq8XN---vHzeLydm6qmqS5qSsLQHQjayqENa3VAA2tBRUdxQ5IBQY0qdsOhGwryjNFUQAwDdYQy2fFzc7beb1RY3BbHV6U1069PfiwVjp3bXpUnLaVzUU4QlNJ3UouNW0Y5rKAkrHsuti5xqndYmdwSEH3e9L9n8E9qbX_rShpiGRCZMPZuyH45wljUlsXDfa9HtBPUTEAXgtBaJ3R0__QjZ_CkGf1SjGgjNSQqfMdZYKPMaD92w0l6nXf6t---R84CpvG</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Marchenkov, Vyacheslav V.</creator><creator>Lukoyanov, Alexey V.</creator><creator>Baidak, Semyon T.</creator><creator>Perevalova, Alexandra N.</creator><creator>Fominykh, Bogdan M.</creator><creator>Naumov, Sergey V.</creator><creator>Marchenkova, Elena B.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2044-1789</orcidid><orcidid>https://orcid.org/0000-0003-4459-0893</orcidid><orcidid>https://orcid.org/0000-0002-4755-3839</orcidid><orcidid>https://orcid.org/0000-0002-8540-8720</orcidid><orcidid>https://orcid.org/0009-0001-1618-6773</orcidid></search><sort><creationdate>20230930</creationdate><title>Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals</title><author>Marchenkov, Vyacheslav V. ; Lukoyanov, Alexey V. ; Baidak, Semyon T. ; Perevalova, Alexandra N. ; Fominykh, Bogdan M. ; Naumov, Sergey V. ; Marchenkova, Elena B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D materials</topic><topic>Bi2Se3</topic><topic>Bi2Te3</topic><topic>Bismuth tellurides</topic><topic>Carrier density</topic><topic>Collaboration</topic><topic>Crystal structure</topic><topic>Current carriers</topic><topic>Density of states</topic><topic>DFT</topic><topic>Electromagnetism</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Fermi level</topic><topic>Hall effect</topic><topic>Magnetic fields</topic><topic>Scanning electron microscopy</topic><topic>Single crystals</topic><topic>Spin-orbit interactions</topic><topic>Symmetry</topic><topic>topological insulator</topic><topic>Topological insulators</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchenkov, Vyacheslav V.</creatorcontrib><creatorcontrib>Lukoyanov, Alexey V.</creatorcontrib><creatorcontrib>Baidak, Semyon T.</creatorcontrib><creatorcontrib>Perevalova, Alexandra N.</creatorcontrib><creatorcontrib>Fominykh, Bogdan M.</creatorcontrib><creatorcontrib>Naumov, Sergey V.</creatorcontrib><creatorcontrib>Marchenkova, Elena B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchenkov, Vyacheslav V.</au><au>Lukoyanov, Alexey V.</au><au>Baidak, Semyon T.</au><au>Perevalova, Alexandra N.</au><au>Fominykh, Bogdan M.</au><au>Naumov, Sergey V.</au><au>Marchenkova, Elena B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals</atitle><jtitle>Micromachines (Basel)</jtitle><date>2023-09-30</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>1888</spage><pages>1888-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin–orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV−1 cell−1 (5 K) to 0.307 states eV−1 cell−1 (300 K) and from 0.9 × 1019 cm−3 (5 K) to 2.6 × 1019 cm−3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV−1 cell−1 (5 K) to 0.198 states eV−1 cell−1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm−3 (5 K) to 2.81 × 1019 cm−3 (300 K).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mi14101888</doi><orcidid>https://orcid.org/0000-0003-2044-1789</orcidid><orcidid>https://orcid.org/0000-0003-4459-0893</orcidid><orcidid>https://orcid.org/0000-0002-4755-3839</orcidid><orcidid>https://orcid.org/0000-0002-8540-8720</orcidid><orcidid>https://orcid.org/0009-0001-1618-6773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2023-09, Vol.14 (10), p.1888
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_31b4f77f3e8649ab939a162e7fc8e922
source Open Access: PubMed Central; Publicly Available Content Database
subjects 2D materials
Bi2Se3
Bi2Te3
Bismuth tellurides
Carrier density
Collaboration
Crystal structure
Current carriers
Density of states
DFT
Electromagnetism
Electron states
Electronic structure
Energy
Fermi level
Hall effect
Magnetic fields
Scanning electron microscopy
Single crystals
Spin-orbit interactions
Symmetry
topological insulator
Topological insulators
Transport properties
title Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structure%20and%20Transport%20Properties%20of%20Bi2Te3%20and%20Bi2Se3%20Single%20Crystals&rft.jtitle=Micromachines%20(Basel)&rft.au=Marchenkov,%20Vyacheslav%20V.&rft.date=2023-09-30&rft.volume=14&rft.issue=10&rft.spage=1888&rft.pages=1888-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi14101888&rft_dat=%3Cproquest_doaj_%3E2883577015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-c54f880a695177fcbfa88615717d1ed8048c8a05bd879b4131771e7882a8fc0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882812058&rft_id=info:pmid/&rfr_iscdi=true