Loading…

New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations

Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2020-05, Vol.10 (5), p.732
Main Authors: Bolcato, Giovanni, Bissaro, Maicol, Deganutti, Giuseppe, Sturlese, Mattia, Moro, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313
cites cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313
container_end_page
container_issue 5
container_start_page 732
container_title Biomolecules (Basel, Switzerland)
container_volume 10
creator Bolcato, Giovanni
Bissaro, Maicol
Deganutti, Giuseppe
Sturlese, Mattia
Moro, Stefano
description Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A (A AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A AR and A AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.
doi_str_mv 10.3390/biom10050732
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631895450</galeid><doaj_id>oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc</doaj_id><sourcerecordid>A631895450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</originalsourceid><addsrcrecordid>eNpVks9rFDEUxwdRbKm9eZaAFw-uJnmZTXIRSuuPxapgLXgLmczbacpMsibZlT37j5t1a9mGQML3ffjwHrymec7oGwBN33Y-TozSlkrgj5pjzpmacQk_Hx_8j5rTnG9pPapeDk-bI-CguZJw3Pz5ir_JImQ_3JRMfCiRfMYtucCCafLBhpouYyJnPYaYfUDCyHd0uCq7MBQ7xOBzha5wRFf8xpctua7gQK7WK0wbn7EnX2ItrkebyMU22Mm7yvupBsXHkJ81T5Z2zHh695401x_e_zj_NLv89nFxfnY5c0KqMrOKCyt6inKOc0q16rXiiluKGpa6bTvRd5pS7GnLqZozWQfsKADnkoEGBifNYu_to701q-Qnm7YmWm_-BTENxqbi3YgGGGrGheAarJBSWOp4B12LoGTHOldd7_au1bqbsHcYSrLjA-nDSvA3ZogbI7lUTIoqeHUnSPHXGnMxk88Ox9EGjOtsuKBMsZbJtqIv9-hga2s-LGM1uh1uzubAlG5FSyv1ek-5FHNOuLxvhlGzWxZzuCwVf3E4wD38fzXgL-_YupQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401815175</pqid></control><display><type>article</type><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</creator><creatorcontrib>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</creatorcontrib><description>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A (A AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A AR and A AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom10050732</identifier><identifier>PMID: 32392873</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>A1AR ; A2AAR ; Adenosine ; Adenosine A1 Receptor Antagonists - chemistry ; Adenosine A1 Receptor Antagonists - pharmacology ; adenosine receptors ; antagonist ; Binding Sites ; Drug receptors ; GPCRs ; Humans ; Molecular Docking Simulation - methods ; Molecular Dynamics Simulation ; Pharmacological research ; Protein Binding ; Receptor, Adenosine A1 - chemistry ; Receptor, Adenosine A1 - metabolism ; selectivity ; Supervised Machine Learning</subject><ispartof>Biomolecules (Basel, Switzerland), 2020-05, Vol.10 (5), p.732</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</citedby><cites>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</cites><orcidid>0000-0003-3944-0313 ; 0000-0002-7514-3802 ; 0000-0002-4472-5682 ; 0000-0001-8780-2986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32392873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolcato, Giovanni</creatorcontrib><creatorcontrib>Bissaro, Maicol</creatorcontrib><creatorcontrib>Deganutti, Giuseppe</creatorcontrib><creatorcontrib>Sturlese, Mattia</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A (A AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A AR and A AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</description><subject>A1AR</subject><subject>A2AAR</subject><subject>Adenosine</subject><subject>Adenosine A1 Receptor Antagonists - chemistry</subject><subject>Adenosine A1 Receptor Antagonists - pharmacology</subject><subject>adenosine receptors</subject><subject>antagonist</subject><subject>Binding Sites</subject><subject>Drug receptors</subject><subject>GPCRs</subject><subject>Humans</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>Pharmacological research</subject><subject>Protein Binding</subject><subject>Receptor, Adenosine A1 - chemistry</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>selectivity</subject><subject>Supervised Machine Learning</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVks9rFDEUxwdRbKm9eZaAFw-uJnmZTXIRSuuPxapgLXgLmczbacpMsibZlT37j5t1a9mGQML3ffjwHrymec7oGwBN33Y-TozSlkrgj5pjzpmacQk_Hx_8j5rTnG9pPapeDk-bI-CguZJw3Pz5ir_JImQ_3JRMfCiRfMYtucCCafLBhpouYyJnPYaYfUDCyHd0uCq7MBQ7xOBzha5wRFf8xpctua7gQK7WK0wbn7EnX2ItrkebyMU22Mm7yvupBsXHkJ81T5Z2zHh695401x_e_zj_NLv89nFxfnY5c0KqMrOKCyt6inKOc0q16rXiiluKGpa6bTvRd5pS7GnLqZozWQfsKADnkoEGBifNYu_to701q-Qnm7YmWm_-BTENxqbi3YgGGGrGheAarJBSWOp4B12LoGTHOldd7_au1bqbsHcYSrLjA-nDSvA3ZogbI7lUTIoqeHUnSPHXGnMxk88Ox9EGjOtsuKBMsZbJtqIv9-hga2s-LGM1uh1uzubAlG5FSyv1ek-5FHNOuLxvhlGzWxZzuCwVf3E4wD38fzXgL-_YupQ</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Bolcato, Giovanni</creator><creator>Bissaro, Maicol</creator><creator>Deganutti, Giuseppe</creator><creator>Sturlese, Mattia</creator><creator>Moro, Stefano</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3944-0313</orcidid><orcidid>https://orcid.org/0000-0002-7514-3802</orcidid><orcidid>https://orcid.org/0000-0002-4472-5682</orcidid><orcidid>https://orcid.org/0000-0001-8780-2986</orcidid></search><sort><creationdate>20200507</creationdate><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><author>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A1AR</topic><topic>A2AAR</topic><topic>Adenosine</topic><topic>Adenosine A1 Receptor Antagonists - chemistry</topic><topic>Adenosine A1 Receptor Antagonists - pharmacology</topic><topic>adenosine receptors</topic><topic>antagonist</topic><topic>Binding Sites</topic><topic>Drug receptors</topic><topic>GPCRs</topic><topic>Humans</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>Pharmacological research</topic><topic>Protein Binding</topic><topic>Receptor, Adenosine A1 - chemistry</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>selectivity</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolcato, Giovanni</creatorcontrib><creatorcontrib>Bissaro, Maicol</creatorcontrib><creatorcontrib>Deganutti, Giuseppe</creatorcontrib><creatorcontrib>Sturlese, Mattia</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolcato, Giovanni</au><au>Bissaro, Maicol</au><au>Deganutti, Giuseppe</au><au>Sturlese, Mattia</au><au>Moro, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>732</spage><pages>732-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A (A AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A AR and A AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32392873</pmid><doi>10.3390/biom10050732</doi><orcidid>https://orcid.org/0000-0003-3944-0313</orcidid><orcidid>https://orcid.org/0000-0002-7514-3802</orcidid><orcidid>https://orcid.org/0000-0002-4472-5682</orcidid><orcidid>https://orcid.org/0000-0001-8780-2986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-273X
ispartof Biomolecules (Basel, Switzerland), 2020-05, Vol.10 (5), p.732
issn 2218-273X
2218-273X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects A1AR
A2AAR
Adenosine
Adenosine A1 Receptor Antagonists - chemistry
Adenosine A1 Receptor Antagonists - pharmacology
adenosine receptors
antagonist
Binding Sites
Drug receptors
GPCRs
Humans
Molecular Docking Simulation - methods
Molecular Dynamics Simulation
Pharmacological research
Protein Binding
Receptor, Adenosine A1 - chemistry
Receptor, Adenosine A1 - metabolism
selectivity
Supervised Machine Learning
title New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insights%20into%20Key%20Determinants%20for%20Adenosine%201%20Receptor%20Antagonists%20Selectivity%20Using%20Supervised%20Molecular%20Dynamics%20Simulations&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Bolcato,%20Giovanni&rft.date=2020-05-07&rft.volume=10&rft.issue=5&rft.spage=732&rft.pages=732-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom10050732&rft_dat=%3Cgale_doaj_%3EA631895450%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401815175&rft_id=info:pmid/32392873&rft_galeid=A631895450&rfr_iscdi=true