Loading…
New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations
Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been...
Saved in:
Published in: | Biomolecules (Basel, Switzerland) Switzerland), 2020-05, Vol.10 (5), p.732 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313 |
container_end_page | |
container_issue | 5 |
container_start_page | 732 |
container_title | Biomolecules (Basel, Switzerland) |
container_volume | 10 |
creator | Bolcato, Giovanni Bissaro, Maicol Deganutti, Giuseppe Sturlese, Mattia Moro, Stefano |
description | Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A
(A
AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A
AR and A
AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site. |
doi_str_mv | 10.3390/biom10050732 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631895450</galeid><doaj_id>oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc</doaj_id><sourcerecordid>A631895450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</originalsourceid><addsrcrecordid>eNpVks9rFDEUxwdRbKm9eZaAFw-uJnmZTXIRSuuPxapgLXgLmczbacpMsibZlT37j5t1a9mGQML3ffjwHrymec7oGwBN33Y-TozSlkrgj5pjzpmacQk_Hx_8j5rTnG9pPapeDk-bI-CguZJw3Pz5ir_JImQ_3JRMfCiRfMYtucCCafLBhpouYyJnPYaYfUDCyHd0uCq7MBQ7xOBzha5wRFf8xpctua7gQK7WK0wbn7EnX2ItrkebyMU22Mm7yvupBsXHkJ81T5Z2zHh695401x_e_zj_NLv89nFxfnY5c0KqMrOKCyt6inKOc0q16rXiiluKGpa6bTvRd5pS7GnLqZozWQfsKADnkoEGBifNYu_to701q-Qnm7YmWm_-BTENxqbi3YgGGGrGheAarJBSWOp4B12LoGTHOldd7_au1bqbsHcYSrLjA-nDSvA3ZogbI7lUTIoqeHUnSPHXGnMxk88Ox9EGjOtsuKBMsZbJtqIv9-hga2s-LGM1uh1uzubAlG5FSyv1ek-5FHNOuLxvhlGzWxZzuCwVf3E4wD38fzXgL-_YupQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401815175</pqid></control><display><type>article</type><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</creator><creatorcontrib>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</creatorcontrib><description>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A
(A
AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A
AR and A
AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom10050732</identifier><identifier>PMID: 32392873</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>A1AR ; A2AAR ; Adenosine ; Adenosine A1 Receptor Antagonists - chemistry ; Adenosine A1 Receptor Antagonists - pharmacology ; adenosine receptors ; antagonist ; Binding Sites ; Drug receptors ; GPCRs ; Humans ; Molecular Docking Simulation - methods ; Molecular Dynamics Simulation ; Pharmacological research ; Protein Binding ; Receptor, Adenosine A1 - chemistry ; Receptor, Adenosine A1 - metabolism ; selectivity ; Supervised Machine Learning</subject><ispartof>Biomolecules (Basel, Switzerland), 2020-05, Vol.10 (5), p.732</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</citedby><cites>FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</cites><orcidid>0000-0003-3944-0313 ; 0000-0002-7514-3802 ; 0000-0002-4472-5682 ; 0000-0001-8780-2986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32392873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolcato, Giovanni</creatorcontrib><creatorcontrib>Bissaro, Maicol</creatorcontrib><creatorcontrib>Deganutti, Giuseppe</creatorcontrib><creatorcontrib>Sturlese, Mattia</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A
(A
AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A
AR and A
AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</description><subject>A1AR</subject><subject>A2AAR</subject><subject>Adenosine</subject><subject>Adenosine A1 Receptor Antagonists - chemistry</subject><subject>Adenosine A1 Receptor Antagonists - pharmacology</subject><subject>adenosine receptors</subject><subject>antagonist</subject><subject>Binding Sites</subject><subject>Drug receptors</subject><subject>GPCRs</subject><subject>Humans</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>Pharmacological research</subject><subject>Protein Binding</subject><subject>Receptor, Adenosine A1 - chemistry</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>selectivity</subject><subject>Supervised Machine Learning</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVks9rFDEUxwdRbKm9eZaAFw-uJnmZTXIRSuuPxapgLXgLmczbacpMsibZlT37j5t1a9mGQML3ffjwHrymec7oGwBN33Y-TozSlkrgj5pjzpmacQk_Hx_8j5rTnG9pPapeDk-bI-CguZJw3Pz5ir_JImQ_3JRMfCiRfMYtucCCafLBhpouYyJnPYaYfUDCyHd0uCq7MBQ7xOBzha5wRFf8xpctua7gQK7WK0wbn7EnX2ItrkebyMU22Mm7yvupBsXHkJ81T5Z2zHh695401x_e_zj_NLv89nFxfnY5c0KqMrOKCyt6inKOc0q16rXiiluKGpa6bTvRd5pS7GnLqZozWQfsKADnkoEGBifNYu_to701q-Qnm7YmWm_-BTENxqbi3YgGGGrGheAarJBSWOp4B12LoGTHOldd7_au1bqbsHcYSrLjA-nDSvA3ZogbI7lUTIoqeHUnSPHXGnMxk88Ox9EGjOtsuKBMsZbJtqIv9-hga2s-LGM1uh1uzubAlG5FSyv1ek-5FHNOuLxvhlGzWxZzuCwVf3E4wD38fzXgL-_YupQ</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Bolcato, Giovanni</creator><creator>Bissaro, Maicol</creator><creator>Deganutti, Giuseppe</creator><creator>Sturlese, Mattia</creator><creator>Moro, Stefano</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3944-0313</orcidid><orcidid>https://orcid.org/0000-0002-7514-3802</orcidid><orcidid>https://orcid.org/0000-0002-4472-5682</orcidid><orcidid>https://orcid.org/0000-0001-8780-2986</orcidid></search><sort><creationdate>20200507</creationdate><title>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</title><author>Bolcato, Giovanni ; Bissaro, Maicol ; Deganutti, Giuseppe ; Sturlese, Mattia ; Moro, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A1AR</topic><topic>A2AAR</topic><topic>Adenosine</topic><topic>Adenosine A1 Receptor Antagonists - chemistry</topic><topic>Adenosine A1 Receptor Antagonists - pharmacology</topic><topic>adenosine receptors</topic><topic>antagonist</topic><topic>Binding Sites</topic><topic>Drug receptors</topic><topic>GPCRs</topic><topic>Humans</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>Pharmacological research</topic><topic>Protein Binding</topic><topic>Receptor, Adenosine A1 - chemistry</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>selectivity</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolcato, Giovanni</creatorcontrib><creatorcontrib>Bissaro, Maicol</creatorcontrib><creatorcontrib>Deganutti, Giuseppe</creatorcontrib><creatorcontrib>Sturlese, Mattia</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolcato, Giovanni</au><au>Bissaro, Maicol</au><au>Deganutti, Giuseppe</au><au>Sturlese, Mattia</au><au>Moro, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>732</spage><pages>732-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets of primary interest indrug design. However, one of the main limits for the development of drugs for this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based models. The structure of the AR subtype A
(A
AR) has been recently solved,providing important structural insights. In the present work, we rationalized the selectivity profile of two selective A
AR and A
AR antagonists, investigating their recognition trajectories obtained by Supervised Molecular Dynamics from an unbound state and monitoring the role of the water molecules in the binding site.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32392873</pmid><doi>10.3390/biom10050732</doi><orcidid>https://orcid.org/0000-0003-3944-0313</orcidid><orcidid>https://orcid.org/0000-0002-7514-3802</orcidid><orcidid>https://orcid.org/0000-0002-4472-5682</orcidid><orcidid>https://orcid.org/0000-0001-8780-2986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-273X |
ispartof | Biomolecules (Basel, Switzerland), 2020-05, Vol.10 (5), p.732 |
issn | 2218-273X 2218-273X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_31e91244293a4774a0c2b3b5e387b1bc |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | A1AR A2AAR Adenosine Adenosine A1 Receptor Antagonists - chemistry Adenosine A1 Receptor Antagonists - pharmacology adenosine receptors antagonist Binding Sites Drug receptors GPCRs Humans Molecular Docking Simulation - methods Molecular Dynamics Simulation Pharmacological research Protein Binding Receptor, Adenosine A1 - chemistry Receptor, Adenosine A1 - metabolism selectivity Supervised Machine Learning |
title | New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insights%20into%20Key%20Determinants%20for%20Adenosine%201%20Receptor%20Antagonists%20Selectivity%20Using%20Supervised%20Molecular%20Dynamics%20Simulations&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Bolcato,%20Giovanni&rft.date=2020-05-07&rft.volume=10&rft.issue=5&rft.spage=732&rft.pages=732-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom10050732&rft_dat=%3Cgale_doaj_%3EA631895450%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-a824a4d0e76e60098d98282a0e93f955b4db900ed05208617873b033227139313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401815175&rft_id=info:pmid/32392873&rft_galeid=A631895450&rfr_iscdi=true |