Loading…

AMMI and GGE biplot analysis of yield of different elite wheat line under terminal heat stress and irrigated environments

Wheat crop contributes to a major portion of the agriculture economy of Nepal. It is ranked as the third major cereal crop of the country even though, it faces terminal heat stress which speeds up the grain filling rate and shortens the filling period, causing reduction in grain weight, size, number...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2021-06, Vol.7 (6), p.e07206-e07206, Article e07206
Main Authors: K.C., Bishwas, Poudel, Mukti Ram, Regmi, Dipendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wheat crop contributes to a major portion of the agriculture economy of Nepal. It is ranked as the third major cereal crop of the country even though, it faces terminal heat stress which speeds up the grain filling rate and shortens the filling period, causing reduction in grain weight, size, number and quality losses. We can minimize this loss through a genotypic selection of high-yielding lines by understanding the genotype-environment interaction. The objective of this research is to obtain a high yielding line with a stable performance across the environments. In order to do so, we conducted an experiment using eighteen elite wheat lines and two check varieties in alpha-lattice design with two replications in different environments viz. irrigated and terminal heat stress environment from November 2019 to April 2020. The analysis of variance revealed that genotype, environment and their interaction had a highly significant effect on the yield. Furthermore, the which-won–where model indicated specific adaptation of elite lines NL 1179, NL 1420, BL 4407, NL 1368 to the irrigated environment and Bhirkuti to the terminal heat-stressed environment. Similarly, the mean-versus-stability study indicated that elite lines BL 4407, NL 1368, BL 4919, NL 1350, and NL 1420 had above-average yield and higher stability whereas elite lines Gautam, NL 1412, NL 1376, NL 1387, NL 1404, and NL 1381 had below-average yield and lower stability. The ranking of elite lines biplot, PC1 explaining 73.6% and PC2 explaining 26.4% of the interaction effect, showed the rank of elite line, NL 1420 > NL 1368> NL 1350 > other lines, close to the ideal line. On the basis of the obtained results, we recommend NL 1420 with both the high yield and stability is suited across both the environments, while NL 1179 and Bhirkuti is adapted specifically for irrigated and terminal heat stress environment, respectively. Adaptability; Alpha-lattice; Biplot; Principal component.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e07206